数学動画教材1117_01「テーマ:学んだことを使って文章問題を解くことができる」について

◆ はじめに ◆

中学校数学を学ぶ人が、動画教材を見てからノートにまとめるときに参考になるような内容を目指すとともに、教える人の目線でも参考になるように考えて記事を書いたつもりです。いずれも2πr(にーぱいあーる)の見解でしかないのですが、よかったら参考にしてください。

また、この動画教材を使った自分なりの勉強の仕方で迷っているときは、ブログ「動画教材を使った勉強の仕方」を参考にしてください。サイト内検索で探す場合は、カテゴリー「勉強の仕方」で検索するとすぐ見つかります。アーカイブ(月単位)ならば「2018 6月」で検索してください。

動画教材へのリンク 1117_01_学んだことを使って文章問題を解くことができる_説明_by_2πr(にーぱいあーる)

動画教材へのリンク 1117_01_学んだことを使って文章問題を解くことができる_練習問題_by_2πr(にーぱいあーる)

◆ 文章問題は宝の山 ◆

「正の数・負の数」の単元では、はじめて負の数について正式に学び、負の数を含めたすべての数で加減乗除の意味や四則の混じった計算の仕方を身につけてきたと思います。

ここで扱う文章問題は、すべて「正の数・負の数」で学んだことを使わなければできない問題です。言い換えれば、ここで扱う文章問題をすべて解けるようになれば「正の数・負の数」で学んだことはうまく使えるようになっているということになります。

同じようなことを何度も書いているのですが、数学は積み重ねの学問なので難しい問題が解けることはそれまで学んだことが身についていることを示すことになるのです。

そのように考えると、ここで扱う文章問題は宝の山といえるのではないでしょうか。

積み重ねてきた知識や計算力は宝物です。せっかくの宝物をうまく使えるようになってください。

動画教材でお話ししたように、気軽に考えて取り組むのが一番です。

ここで扱う問題だけでなく、積極的に問題集などの問題にも取り組みましょう \(^_^)/

◆ 例1は項がポイント ◆

スライドをよく見てもらえればそれでいいのですが、この単元のまとめにもなるので少しだけ解説を付け加えます。

例1の問題は、「項を理解しているか」を確認する問題です。

動画教材1107_01では、「項とは加法の記号+(たす)でつながれている数字や文字のこ」だと説明しました。このことから、項を考えるときには、「ひき算があればまずたし算に直してから考える」というテクニックが頭に浮かぶ必要があります。

これが一番大切なポイントです。これがわかっている人は、7-3+(-5)の7と-3の間には見えないたし算記号+(たす)が隠れているとすぐわかるはずです。

このとき、7ひく3と読んだ人がいて「(+7)-(+3)=(+7)+(-3)だから項は7と-3だ」と考えてもかまいません。

これら2つの考え方がすぐ頭に浮かぶ人は、なかなかの実力者ということになります。

もちろん、「(+7)-(+3)=(+7)+(-3)」が浮かぶということは、「減法は引く数の符号を変えて加法に直せる」ことが身についているということになります。

 

◆ 例2は暗算がポイント ◆

例2は、「A+(-1)+0の式の和が-3になるときのAにあてはまる数」を探す問題です。

A+(-1)+0を簡単にするとA+1となるので、この問題は「A+1の式の和が-3になるときのAにあてはまる数」を探せばよいことになります。

これなら、「Aにいろいろな数をあてはめてみて暗算 → 答えが-3になる数を探す」という作業をすればよいことになります。

そう考えると、この問題は「とにかくAにいろいろな数をあてはめて答えが-3になるかどうか確かめる」ことが最も重要だとわかります。

つまり、この問題は「同符号・異符号の2数の和を暗算で計算できる力」があるかどうかを確かめる問題といえるのです。

暗算力はとても大切な力です。まだ自信がないという人は、動画教材1106_01にもう一度取り組んでみてください。その方がよくわからない問題に時間を取られるよりもはるかに効率的です (^_-)v

また、この問題が速く正確に解けるようになると、この後で学ぶ「1次方程式」という単元が理解しやすくなります。今は知らなくてよいのですが、そういうよい効果もあるので是非頑張ってください。

 

◆ 例3も暗算がポイント ◆

例3は、いわゆる「魔方陣」という問題です。この問題のポイントも「同符号・異符号の2数の和を暗算で計算できる力」です。

解説をよく見てもらえればよいのですが、例2でやった計算をもっと数多くする問題だからです。

また、「一番最初に3つの数の和がいくつなのかを求める」ことがこの問題のスタートになります。例3の場合は「右上がり斜めの3つの数がそろている」ことに気づくことがポイントです。

ここら辺は、問題文と解説文をよ~く読んで問題の意図を理解できていることがカギになります。

このように、文章問題は「問題の意図を理解する国語の力」が大切になります。

国語も頑張りましょう!

 

◆ 例4は国語力がポイント ◆

例4も暗算力が大切なのですが、一番大切なことは「問題の意味をよく理解できること」だと2πr(にーぱいあーる)は考えます。

問題の意味を理解して、具体的な数字の組み合わせが頭に浮かばなければこの問題は先に進まないからです。

ここら辺は、動画教材の解説をよく読んでみてください。読みながら、いろいろな場合をメモ用紙に書いてイメージが浮かぶようにすることが大切です。

こうして頭が整理できたら、ノートに、できるだけ簡単に、できるだけ思い出しやすいように、まとめてみましょう。これがワンランク上の頭のトレーニングになります。ノート整理頑張りましょう。

 

◆ 例5は「2つの方法」がポイント ◆

例5は3人の身長平均を求める問題ですが、小学校で学んだ「平均の求め方」を覚えていないと話になりません。

そういう人は、解説の最初の解き方をよく見て思い出してください。

その方法がわかっている人は、「仮の平均を使った平均の求め方」ができるようになってください。

この問題のポイントは、「2通りの解き方どちらもできるようになることが大切」ということです。

どちらもできるようになって、いろいろなことがはっきりと理解できるようになるからです。

面倒だといわずに挑戦しましょう。

 

◆ 終わりに~数学の本当の目的 ◆

例5の仮の平均を使った求め方がなぜ正しいのか、わからない人もいるでしょう。なんとなくわかったけれど説明するとなると自信がないという人はもっと多いかと思います。

このあたりの疑問をそのままにせずに、じっくり考えることができるようになることが数学の本当の目的です。

難しい言葉で言うと「論理的な思考ができるようになることと発想力がつくことが数学の本当の目的」です。

「なんとなくわかる」ではなく「こういう理由だからこうなる。次はこんな理由でこうなる・・・」とか、「こうすればいいんじゃないか!?」というふうに、理由をはっきりさせながら考えることができたり、うまい考えが閃く(ひらめく)ようになってほしいということです。

=========

みなさんは、「よくわからないけどまぁいいか」と考えて物事を進めることはありませんか?

それが絶対悪いとはいいませんが、でるだけ理由がはっきりしているほうが自分も他人も納得できるはずですから、理由をはっきりさせて考えを進めるように努力してみてください。

「仮の平均を使った求め方が本当に正しいの?」と感じたら、納得できる理由を自分で考えてみてください。

その姿勢が、あなたを「論理的に考える人、閃く人」に近づけてくれます。社会に出ても「人を納得させられる人、アイデアが浮かぶ人」に近づけてくれます。「相手の話におかしいところがないか判断できる人」に近づけてくれます。

では、最後に「仮の平均を使う方法がなぜ正しいのか」を説明して、この単元のブログを終わります。

(興味や時間のない人は、ここから先は読まなくても結構です)

 


 

「仮の平均を使った求め方が正しい理由」

3本の棒を考えます。この3本の棒の平均の長さを求めることを考えましょう。

9cm     =========

5cm     =====

7cm     =======

この3本の合計の長さは9+5+7=21 cm。

21 cm  =====================

この長さを3でわれば、3本の平均の長さが求められます。

21÷3=7

21 cm  ======= ======= =======

平均とは「合計してその個数で割った長さ」をいいます。9cm、5cm、7cm いろいろな長さがあるけど「まぁ、ならしてみると、1本7cmと見とけばいいんじゃない? 」といった感じの数(代表値といいます)です。

では、「仮の平均」を使ったやり方で考えてみます。

仮に、基準を4cm とすると(図の青の線です。基準は何cmにしてもかまいません)

9cm     =========

5cm     =====

7cm     =======

これを一直線に並べます。

21 cm  ======= ===== =========

これを、次のように並べ替えてみます。

21cm  ==== ==== ==== ===   =   =====

このように並べてみると、

青の平均は12÷3=4

残りの平均が(3+1+5)÷3=9÷3=3

となるので、

平均=4+3=7 だとわかります。

21cm  ==== ==== ==== ===   ===   ===

21 cm  ====  ===   ====  ===  ====  ===

ここで、4は最初に決めた基準、3は「差の平均」つまり「仮の平均」になっているので、

平均=基準+仮の平均

で求めてよいことがわかります。


どうでしょう?

納得してもらえたでしょうか?

言葉だけでは納得できない人もいると思い、長さの図をいろいろ付け加えたので、じっくり見て考えてみてください。


また、話は違うのですが、

下の図を見ると

21cm  ==== ==== ==== ===   =   =====

3本の全体の長さ=基準×3+(差の合計)

という関係に気づきませんか?

このように、具体的に考えると別な性質も発見しやすくなります。


ちなみに、この説明を数式を使って説明することもできます。

平均=(9+5+7)/3

=(+5++1++3)/3

/3+5/3+/3+1/3+/3+3/3

/3+/3+/3+5/3+1/3+3/3

=()/3  +(5+1+3)/3

=12/3 + (5+1+3)/3

+ (5+1+3)/3

=基準 + 仮の平均


このように、最初に言葉や図で説明したことが、数式でも説明できるのです。

このことから「数学は言葉」といわれます。

理由をはっきりさせながら説明できる人は、式を使って説明することができるようになります。

式を使って説明できる人は、理由をはっきりさせながら説明することができるようになります。

そして、普通の人が見逃しやすい理由に気づく(閃く)ことができるようになります。

さて、この計算には 加法(減法)と除法(乗法)が使われています。ということは、当然、ここで行われている計算が正しい理由を知っていなければなりません。

その理由のひとつが、「分配法則は正しい」という知識です。

その理由のひとつが、「加法の交換法則、情報の交換法則」という知識です。

その理由のひとつが、「正の数・負の数の分数・小数は四則について閉じている」という知識です。

※冷静に自分がどんな理由(計算法則)で計算を進めているのかを見つめてみてください。他にもあるかもしれません・・・

これらの知識があるからこそ、9,5,7ではなく他の整数や分数・小数であっても「平均=基準+仮の平均」が成り立つだろうと予測し説明ができるのです。

これらの知識があるからこそ、仮に基準を7とすると差には負の数が生じますが、このような場合でも「平均=基準+仮の平均」が成り立つだろうと予測し説明ができるのです。

そして、今は、9,5,7という「3つの数」を具体例として数式で説明しましたが、次の単元で学ぶ「文字式」を使って説明すると、その「3つの数」がどんな整数や分数・小数でも「平均=基準+仮の平均」が正しいと説明することができます。

理由は、「文字はすべての数字の代わりになる」と考えるからなのですが、文字を使った説明の簡単な例を一番下に付け加えておきます。

「文字式」自体はそれほど難しくありません。次の単元も頑張ってください。

では、「正の数・負の数」の単元は以上です。 \(^_^)/


◆ 参考~「証明」 ◆

「3つの数を考えたとき、平均=基準+仮の平均となることを証明しなさい。」

※証明:筋道立てて説明すること

「証明」

k,x,y,z を正の数・負の数の分数・小数とする。

kは仮の基準、

x,y,zを「仮の基準との差」とすると、

3つの数はそれぞれ、k+x,k+y,k+z、と表される。

これより、

平均={(+x)+(+y)+(+z)}/3

=(+x++y++z)/3

/3+x/3+/3+y/3+/3+z/3

/3+/3+/3+x/3+y/3+z/3

=()/3  +(x+y+z)/3

=3×/3 + (x+y+z)/3

+ (x+y+z)/3

よって、

平均=基準 + 仮の平均 となることがわかる。

証明終わり

※みなさんは、数字の個数は3つ以外に、2つでも、4つでも、5つでも、いくつでも正しいことは、わかるでしょう。そのことをまとめて証明する書き方はありますが、ここでは文字を使った説明文(数式)のイメージを持ってもらうことが目的なので、省略します。(^^)/

 

スポンサーリンク

数学動画教材1112_01「テーマ:3つ以上の数の乗法計算が正確にできる」について

◆ はじめに ◆

中学校数学を学ぶ人が、動画教材を見てからノートにまとめるときに参考になるような内容を目指すとともに、教える人の目線でも参考になるように考えて記事を書いたつもりです。いずれも2πr(にーぱいあーる)の見解でしかないのですが、よかったら参考にしてください。

また、この動画教材を使った自分なりの勉強の仕方で迷っているときは、ブログ「動画教材を使った勉強の仕方」を参考にしてください。サイト内検索で探す場合は、カテゴリー「勉強の仕方」で検索するとすぐ見つかります。アーカイブ(月単位)ならば「2018 6月」で検索してください。

動画教材へのリンク 1112_01_3つ以上の数の乗法計算が正確にできる_説明_by_2πr(にーぱいあーる)

動画教材へのリンク 1112_01_3つ以上の数の乗法計算が正確にできる_練習問題_by_2πr(にーぱいあーる)

◆ 「答えの符号の決め方」が大切 ◆

今回のテーマのねらいは、「3つ以上の数の乗法計算も答えの符号を先に決めて正確することができる」ことです。

実は、除法は逆数で乗法にするこができるので、乗法と除法が混じった式や除法が複数ある式も同様に答えの符号を決めることができます。

これについては、後のテーマで説明します。

動画教材の説明のように、いくつ負の数をかけるかが答えの符号を決めるポイントとなっています。

あとは、乗法にも「交換法則」、「結合法則」が成り立つので、かける順序も数字の順番も自由だということも大切なポイントです。

これらのどれもがパッと浮かぶようになって、何通りかの計算方法が頭に浮かぶようになることが大切です。

その中から一番よい方法を選んで途中計算を書くことができるように、練習に取り組んでください。

もちろん、数直線上の動きで意味を説明できるようになることも忘れずに!

今回は、以上です。

 

スポンサーリンク

数学動画教材1111_01「テーマ:正負の数における乗法の意味が理解できる」について

◆ はじめに ◆

中学校数学を学ぶ人が、動画教材を見てからノートにまとめるときに参考になるような内容を目指すとともに、教える人の目線でも参考になるように考えて記事を書いたつもりです。いずれも2πr(にーぱいあーる)の見解でしかないのですが、よかったら参考にしてください。

また、この動画教材を使った自分なりの勉強の仕方で迷っているときは、ブログ「動画教材を使った勉強の仕方」を参考にしてください。サイト内検索で探す場合は、カテゴリー「勉強の仕方」で検索するとすぐ見つかります。アーカイブ(月単位)ならば「2018 6月」で検索してください。

動画教材へのリンク 1111_01_正負の数における乗法の意味が理解できる_説明_by_2πr(にーぱいあーる)

動画教材へのリンク 1111_01_正負の数における乗法の意味が理解できる_練習問題_by_2πr(にーぱいあーる)

 

◆ 乗法・乗法の意味 ◆

今回のテーマのねらいは、「乗法・除法の意味を理解すること」です。

本来、乗法と除法は切っても切れない関係にありますから、乗法と除法の意味を自分なりに納得して理解できることが最も大切なこととなります。(今は、細かいことにはこだわらなくてもよいです)

ちなみに、説明動画の最後の方で突然「積(せき)」という用語を使っています。話の流れから想像できた人もいるかと思いますが、積は「乗法の答え」のことです。加法の答え、減法の答え、乗法の答え、除法の答えをそれぞれ、和、差、積、商といいます。ここは動画教材に載せることを忘れてしまいました (^_^;)

2πr(にーぱいあーる)は、乗法と除法の関係を次のように考えています。

– – – – – – – – – – – – – –

3×2=6は誰もが知っていますから、

「3×◇=6のとき、◇はいくつ?」と聞かれたとき、「2です。」と誰もが答えることができます。

では、「11×◇=123のとき、◇はいくつ?」と聞かれたらどうでしょう?

すぐ答えられる人は少ないのではないでしょうか。

そこで、誰もがすぐ◇を求められる方法を考えました。その方法が除法(わり算)です。

つまり、3×2=6だから3×◇=6のときの◇を求めるために「6わる3(6÷3)」という計算をすればよいと考えたのです。

つまり、◇を求めるために生まれたのが除法ということになります。

ここで、「11×◇=123のとき、◇はいくつ?」に戻ると、

◇=123÷11=13と計算できるので、誰もが「◇は13です」と答えられるようになるということです。

– – – – – – – – – – – – – –

このような関係は、加法と減法にもいえます。

つまり、「2+◇=5」の◇を求めるために生まれたのが減法というこです。

これらのことは小学校でも触れられていると思いますが、どうでしょう?

ちなみに、

「7×◇=3のとき、◇はいくつ?」と聞かれたら、

「◇=3÷7=3/7 です。」と答えることになりますが、

当然、分数という数がなかったら、

誰かが分数をつくっただろうと簡単に想像できる・・・

などと考えていくと、少しは身近に感じませんか ?

・・・無理かもですね (^^ゞ

※ 確かめ 7×3/7=3 OK!

 

◆ 「負の数をかける」意味 ◆

動画教材では、「負の数をかける」とは「向きを変える」ことだと説明しています。

このことをもう少し詳しく説明します。

実は、(+2)×(-3)=-(2×3) は 次のような式がより正確に意味を表しています。

(+2)×(-3)=(+2)×(-1)×3

つまり、「かけるマイナス3」とは「マイナス1をかけて3倍すること」と考えるのです。

そうすると、「マイナス1をかけること」が「向きを変えること」を表しているとわかります。

ですから、正確には「マイナス1をかけることが向きを変えることを表している」ということなのです。

では、

(+2)×(-3)=-(2×3) と表したのは何故かというと、

符号を先に決めて、後は小学校のかけ算をすればいい」ことを理解してほしかったからです。

このように、式にはそれぞれに意味があるので、式の意味をしっかり理解してください。

 

◆ 約分の仕方 ◆

約分の仕方は知っていても、

小学校でわり算が苦手だった人は、答えが分数の形になってから約分を考える人が多いように感じています。

きっと頑張って身につけたのだと思いますが、中学生になったら「途中計算の段階で約分」をしてください。

このやり方が絶対に計算が楽です!

中学校では分数の分母分子が大きな数になることも多いので、最後に約分をすると 、約分もしにくく、ミスも多くなります。

そして、一番理想的なのは「途中計算の段階で約分して、最後にさらに約分できないか確かめる」という姿勢を持つことなのです。

ですから、いまのうちに途中計算の段階で約分ができるようになりましょう。

もちろん、「答えの符号を先に決める」を確実に身につけることが最も大切です!

今回は、以上です。

 

スポンサーリンク

数学動画教材1110_01「テーマ:分数の加法が正確に計算できる」について

◆ はじめに ◆

中学校数学を学ぶ人が、動画教材を見てからノートにまとめるときに参考になるような内容を目指すとともに、教える人の目線でも参考になるように考えて記事を書いたつもりです。いずれも2πr(にーぱいあーる)の見解でしかないのですが、よかったら参考にしてください。

また、この動画教材を使った自分なりの勉強の仕方で迷っているときは、ブログ「動画教材を使った勉強の仕方」を参考にしてください。サイト内検索で探す場合は、カテゴリー「勉強の仕方」で検索するとすぐ見つかります。アーカイブ(月単位)ならば「2018 6月」で検索してください。

動画教材へのリンク 1110_01_分数の加法が正確に計算できる_説明_by_2πr(にーぱいあーる)

動画教材へのリンク 1110_01_分数の加法が正確に計算できる_練習問題_by_2πr(にーぱいあーる)

これで計算力は十分

今回のテーマのねらいは、「分数の加法計算を通して今までの計算を確実に身につけてほしい」ということです。

分数の加法計算と書きましたが、「見た目が減法」でも、「項を並べた式とカッコのある式が混じった式」でも、最終的には「項を並べた式」つまり加法として計算するので、結局は分数の加法計算がすらすらできるようになればすべてOKということです。

そして、分数の加法計算には今まで習ってきた計算テクニックが必要になります。つまり、分数の加法計算が正確にできれば、今まで習った計算テクニックが身についているといってもいいのです。

逆にいえば、分数の加法計算ができるように努力すれば、今まで習った計算テクニックがすべてできるようになるということです。

分数の加法計算が正確にできれば、計算力は申し分ありません。計算が得意な人は「速く正確に」を目標に、計算が苦手な人は「正確に」を目標に、確実に答えが出せるように練習してください。

今回の動画教材では、

分数の計算では小学校で習った通分と約分は避けて通れませんから、最初にその確認をしました。しかし、機械的に思い出すだけでは意味がないので、分数の意味と性質を簡単に説明しました。

分数の意味といってもあまり堅苦しい説明だと直感的に理解できないので、動画教材では「分数は、1をいくつに分けた何個分なのかを表す数字」のように説明をしています。

これを、「分数とは、整数 a 0 ではない整数 b でわった答えを a /b で表したもので、わり算を表しているともいえる。 また、0 ではない整数 b でわるということは、0でわることは考えないということ。下の整数 b を分母、上に整数 a を分子という・・・」などと説明したら、見るのやめますよね (^_^;

それに、小学校でどの程度習っているのかも人によって違うでしょうから・・・

しかし、「0で割ることは考えない」という点はとても重要で、後で必ず役に立ちますから覚えておきましょう。

また、「分数はわり算(除法)を表している」ということも、あわせて覚えておくべきことです。

これらについては、これからの計算にも必要なことなので、次の段落で少しくわしく説明します。

 

◆ 0でわること ◆

なぜ「0でわることは考えない」のかは、次のように考えると理解できます。

まず、わり算(除法)の意味を考えましょう。

 

6÷2=3 は、「○が6あるとき、2ずつ分けると何グループできますか? 3 です。」という意味になります。

○○○○○○ ÷ ○○ = ○○、○○、○○の3グループ

 

このことを理解したうえで、わる数を、6、3、2、1、0.5、0.1、と小さくしてみます。

 

6÷6=1 は、「○が6あるとき、6ずつ分けると何グループできますか? 1です。」

○○○○○○ ÷ ○○○○○○ = ○○○○○○の1グループ

6÷3=2 は、「○が6あるとき、3ずつ分けると何グループできますか? 2です。」

○○○○○○ ÷ ○○○ = ○○○、○○○の2グループ

6÷2=3 は、「○が6あるとき、2ずつ分けると何グループできますか? 3です。」

○○○○○○ ÷ ○○ = ○○、○○、○○の3グループ

6÷1=6 は、「○が6あるとき、1ずつ分けると何グループできますか? 6です。」

○○○○○○ ÷ ○ = ○、○、○、○、○、○の6グループ

 

次は、「わる0.5」 つまり 「わる2分の1」 です。

答えは、6÷0.5=12 になりますが、その意味は、

「○が6あるとき、0.5ずつ分けると何グループできますか?」

「1の中には0.5が2グループできるので、6の中には12です。」

 

 

最後に、「わる0.1」 つまり 「わる10分の1」 です。

答えは、6÷0.1=60 になりますが、その意味は、

「○が6あるとき、0.1ずつ分けると何グループできますか?」

「1の中には0.1が10グループできるので、6の中には60です。」

 

どうでしょう? 当然ながら、わる数が小さくなればなるほど、6の中にはわる数がたくさん入っていることになります。つまり、できるグループ数が多くなります。

ということは、わる数が0に近づけば近づくほど、答えは非常に大きな数になることがわかります。

最終的には、答えは数字ではなく、無限大(infinity )としてごまかすしかなくなります。

こう考えると、0でわるということは答えはが出せないという結論になってしまいます。

だから「0でわることは考えない」というきまりになったと理解しておいてください (^_^)v

 

◆ 分数はわり算 ◆

分数はわり算(除法)を表している」ということは、次のように考えて理解してください。

 

6÷2は3になります。6/2(2分の6)も3になります。

6÷3は2になります。6/3(3分の6)も2になります。

6÷1は6になります。6/1(1分の6)も6になります。

6÷6は1になります。6/6(6分の6)も1になります。

 

このように、「分子÷分母」と「(分母)分の(分子)」は同じ計算をあわらしています。

つまり、どちらもわり算(除法)の表し方のひとつなのです。

ちなみに、この他に同じような意味を持つ表現には「割合を表す比」があります。

6:1は、6/1 と同じ。つまり、6÷1と同じ。

6:2は、6/2 と同じ。つまり、6÷2と同じ。

6:3は、6/3 と同じ。つまり、6÷3と同じ。

6:6は、6/6 と同じ。つまり、6÷6と同じ。

・・・ということです。

 

どうでしょう?

分数はわり算(除法)を表している」ということが納得できましたか?

あとは、「わり算(除法)が、分子÷分母 」であることを間違えないようにしてください。慣れない人は、よく逆に考えることがあります。

順序を忘れたら、「6:2は、6/2 と同じ。つまり、6÷2と同じ。」を思い浮かべて、「分子÷分母 」であることを思い出してください。

 

◆ 比:と ÷ の関係 ◆

6:1は、6/1 と同じ。つまり、6÷1と同じ。

6:2は、6/2 と同じ。つまり、6÷2と同じ。

6:3は、6/3 と同じ。つまり、6÷3と同じ。

6:6は、6/6 と同じ。つまり、6÷6と同じ。

・・・を見て、

「分数はわり算(除法)を表している」以外になにか気づきませんか?

 

実は、比の記号 : に、横棒を入れると、わり算(除法)の記号 ÷ になっています。

 

恐らく、歴史的には比や分数が先に考え出されて、その計算を表す新しい記号として ÷ が生まれたのではないかと、2πr(にーぱいあーる)は勝手に考えています。まったく別の由来もあるようですし、調べていないので確証はありませんが ・・・ m(_ _)m

でも、図のように分数から ÷ の記号が生まれたと考えるのは妥当だと考えています。

 

 

参考までに、次の3つの式を見比べてください。

 

18÷3=6÷1=6

18/3=6/1=6

18:3=6:1 比の値

比の値とは「記号:の右側の数字を基準に、記号:の左側の数字はその何倍なのかを表す数字」です。

どれも意味は同じです。

 

◆ 世界のわり算 ◆

話は少しそれるのですが、

日本は、なぜ18÷3=6÷1=6 の表現方法を採用したのでしょう。

「そもそも÷しか入ってこなかった?」

「÷を使った方が縦書きにも横書きにも使えると考えた?」

本当の理由はわかりませんが、÷ は世界ではほとんど使われていない記号であることは事実のようです。

ですから、「分数はわり算(除法)と同じ」ということは常に意識しておくとよいと思います。

特に、文字式を習うと ÷ を分数で表すきまりが出てきますし、実際に分数をわり算(除法)と考えることも多くなります。

インターネットで調べた限りでは、世界の多くの国々では、わり算(除法)を表すために、18/3=6/1=6 や 18:3=6:1 の表現方法を採用しているようです。

記号 ÷ を使っているのはイギリスとアメリカくらいのようです。しかし、アメリカで ÷ を見たことがないという人もいるようなので、本当のところはわかりません。

外国の人に会ったら、ぜひ質問してみてください。意外な事実が見えてくると思います。

ちなみに、数学などに関する備忘録というインターネット上のページには、スウェーデンあたりでは昔、マイナス記号の代わりに ÷ を使っていたこともあると記述されていました。

また、ウィキペディアでは次のような興味深い文章がありました。

ポーランド語などで、「÷」は範囲を示すのに使われていた。「:」にも同様の意味があり、たとえば「10÷20」や「10:20」は「10から20まで」を意味する。現在では自然言語ではあまり使われないが、Excelのセル範囲指定で「:」が使われる。

このように調べていくと、所詮(しょせん)数学で使われる記号は人間がつくったもので、つくった人やつくられた地域、その歴史などで、いろいろな記号が生まれ、いろいろな使い方がされている、ということがわかります。

まあ、これからは、わり算(除法)の記号は「/(スラッシュ)」、かけ算(乗法)の記号は「*(アスタリスク)」が世界共通になるかもしれません。

なぜならば、電卓やパソコンのキーボードに「÷」や「×」はないからです。あるのは「/」と「*」だけですから。

 

◆ 大切な計算はひとつ ◆

話を本題に戻します。

練習問題動画では、中学校で学ぶ分数の加法計算を4つの問題をもとに説明しています。

しかし、押さえるべき大切な計算はひとつだけです。それは,説明動画の最終問題である (-3/2)+(+1/4) です。

なぜならば、

項を並べた式に直して通分するテクニック

を使えば1,2番目の問題と共通ですし、

最初に同符号・異符号の2数の和を使うテクニック

も扱いやすい問題だからです。

この問題を2つのテクニックを使って解ければ、ここでのポイントはすべて押さえたことになります。

 

あと、間違えやすいのは「分数の横棒がカッコの代わり」ということでしょう。

写真のように、分子の項が 6 と -1 の2つあるときに分数を使う場合は、分子の6-1 を(  )で囲む必要はありません。分数の横棒がカッコの役割をしているからです。

数学の世界では、同じ意味をもつ2つの表現を2つ同時に使うと意味が変わることがあります。また、できるだけ簡単に表す必要があります。こうした理由から、分数の横棒がカッコの役割をしているので、さらに分子をカッコで囲むことはしないのです。

カッコをつけると間違いと判定されることもあるので、注意してください。

 

ちなみに、

スラッシュを使ってこの式を表すときは、カッコが必要になり、-(6-1)/4 と書きます。そして、この式は(-6+1)/4と表すこともできます。

これは、どちらも -5/4になることから納得できると思います。

カッコをつけずに -6-1/4 と書くと、「/4」は-1にだけ影響して(-6)+(-1/4)の意味になります。-6 と -1/4  は別々な項になることに注意してください。

このように、カッコの使い方は実はとても注意が必要です。

ついでに書いておくと、(-6-1)/4と-(6-1)/4はちがいます。

(-6-1)/4は-7/4、-(6-1)/4は-5/4となるからです。

カッコのつけ方がちょっと違うだけで全く違う式になりますね。

 

◆ 練習問題の補足 ◆

練習問題1.は、2通りの計算が正確にできることを目的につくりました。

 

 

 

 

 

練習問題2.は、項が3つの場合にも正確に計算できることを目的につくりました。

 

 

 

 

 

 

あとは、細かなテクニックが理解できるように解説を書きました。

細かなテクニックは、次の3つです。

① 「項を並べた式にして計算」が原則

分数や小数があっても、いままでと同様に「項を並べた式に直す」ことが一番のテクニック。

② 途中計算のテクニック

途中計算は、ミスをしないために必要ですが、相手に自分の考えを伝えるためにも書きます。しかし、分数の加法計算ともなると、基礎的な計算は暗算でやって途中計算に書かない方が、相手も自分も見やすくなります。だらだら長いだけの文章を、簡潔な文章にする方が好まれるのと同じです。

どの程度の途中計算を書けるようになればいいかについて、何ヶ所かで触れています。それらを参考に、自分にとっての理想の途中計算をノートにまとめてみるとよいと思います。

③ 整数や小数が混じっているときのテクニック

整数も小数も、「1分の~」という分数になることを利用して、全部分数にしてから計算する。

 

これらのテクニックを意識して、何度も練習してください。

問題を見たらスラスラと途中計算が書けるようになれば、このテーマは卒業です。

 

今回は、以上です。

 

数学動画教材1106_01「テーマ:同符号・異符号の和を身につけることができる」について

◆ はじめに ◆

今回は、数学動画教材1106_01「テーマ:同符号・異符号の和を身につけることができる」の内容について少し詳しく説明します。

最初に訂正です。1106_01の3枚目のスライドを写真として載せましたが、その下から2行目に「までいったら」と書いてありますが、「までいったら」の間違いです。訂正してお詫びします m(_ _)m

また、お詫びといってはなんですが、写真のような記録用紙や問題用紙を作成したエクセルファイルや pdf ファイルを利用する方法を最後に紹介します。よかったら使ってください。

中学校数学を学ぶ人が、動画教材を見てからノートにまとめるときに参考になるような内容を目指すとともに、教える人の目線でも参考になるように考えて記事を書いたつもりです。いずれも2πr(にーぱいあーる)の見解でしかないのですが、よかったら参考にしてください。

 

動画教材へのリンク 1106_01_同符号・異符号の和を身につけることができる_説明_by_2πr(にーぱいあーる)

動画教材へのリンク 1106_01_同符号・異符号の和を身につけることができる_練習問題_by_2πr(にーぱいあーる)

◆ 一番大切なことは「素早い反応」  ◆

今回のテーマで一番大切なことは、「同符号・異符号の2数の和」の問題に素早く解答できるようになることです。もちろん、必要に応じて、人に数直線を使って理由を説明でき、途中計算も書けることは当然のことです。それらができるようになることを「身につく」と表現しています。

これからはいろいろ複雑な計算をします。文字を使った計算もたくさん出てきます。しかし、どんな複雑な計算をするときでも、最終的には「同符号・異符号の2数の和」に立ち戻らないといけないことがほとんどなのです。

ということは、(「同符号・異符号の2数の和」に素早く反応できる)=(難しいことをゆっくり考える時間を作り出せる)ということになります。ですから、今のうちに「素早い反応」をしっかり身につけてほしいのです。

間違っても「もう少し後になったら頑張ろう」と考えないでください。次から次へと新しい内容が出てくるので、「もう少し頑張る時間」はそうそう生まれるものではありません。・・・今頑張り続けることが、後の楽につながります!

この練習方法は、短時間に繰り返してもよいのですが、間隔をあけて取り組むと、何度も思い出すことができるので、より効果が期待できます。

このやり方に限らず、どんな練習方法でもよいので、今のうちに「同符号・異符号の2数の和」をすらすら計算できるようになってください。

 

◆ 影のねらいは「たし算記号の省略に慣れること」 ◆

以上が、このテーマのねらいですが、実はもうひとつ「影のねらい」があります。

それは、「たし算の記号は省略してよいことに少しずつ慣れてほしい」ということです。

中学校にひき算はありません。減法は加法に直せるので、減法を考える必要はないからです。そして、必ずたし算だけの式にできるのなら、全部たし算にして、たし算の記号は書かないのもありじゃない? といった流れになって、現在のような「項を並べた式」が使われているのだと、2πr(にーぱいあーる)は勝手に解釈しています。

「項を並べた式」とは、たし算の記号+(たす)を書かずに数字を並べて加法の式を表す表し方です。後でくわしく説明しますが、この「項を並べた式」を説明する前にウォーミングアップをしておきたいということです。

 

◆ 練習方法について ◆

2枚のトランプを見て得点を計算するゲームを考えましょう。

赤の ♥ ♦ は得点、黒の ♠ ♣ は減点と決めておくと、「5」と「♠7」のトランプをひいたときの合計得点は、「5点得点して、7点減点されるから、あわせて2点減点になる。」と考えて、答えを出すでしょう。つまり、たし算をすることは決まっているので、2枚のトランプを見ただけで、何点得点か減点かを答えることができます。

これを、正の数・負の数の加法計算として考えると、

(+5)+(-7)

=-(7-5)

=-2

となります。そして、記号+(たす)を無視すると、「+5」と「-7」で「-2」となるということです。(たし算を表す+のような記号を、演算記号とカッコよくいうこともあります)

このやり方を表にしてできるようにしたものが、図で紹介した問題といえます。

くわしいやり方は、動画教材を見てもらえればいいのですが、この問題が「たし算の記号は書かなくてもいい」ということが前提になっていることは忘れないでください。このことを忘れるということは、理由を理解せずにただ覚えているだけと同じことになってしまいます。

 

◆ 注意すべきこと ◆

練習問題に取り組むとき、注意すべきことについて2つお話しします。

ひとつ目の注意点は、「限られた時間で集中して行う」ということです。

当たり前のことですが、計算を終えても集中力をきらさないことがポイントです。

早く計算が終わった人は、自分が何分で終わったのかを記録します。その後は、やることがないのでのんびりする人が多いのでは?

実は、そうすると集中力が途切れてしまいます。続けい練習するにしろ、別な学習に取り組むにしろ、いったん無意識に途切れた集中力は戻すのにエネルギーを使うものです。

そこで、次の2点を意識してください。

ひとつは、勉強をするときは「どこまで集中力を続けるか決めておく」ということです。一口に集中力といっても「100%の集中力」と「50%の集中力」は違います。そこで、「集中力を続ける」とは、「ぼ~っとして、集中力0%になることは避ける」と考えてください。

この場合は、「終わった時間をメモした瞬間に、集中力0になることは避ける」という意味になります。

では、どうすればよいかというと、簡単なことです。同符号・異符号の2数の和をゆっくり思い出したり、自分で問題をつくって解いてみるといったことをして、時間が終わるのを待てばよいのです。

待っている時間ができたときに、自分を鍛えて集中力を切らさないような何かを考え出す力も「学ぶ力」だと思います。その力は、みなさんにもともと備わっているものですが、このことを意識することが実は大切だということです。

2πr(にーぱいあーる)は、待ち時間をどう使うかはとても大切だと考えています。誰もが持っている時間はかわりません。では限られた時間を有効に使うためには何が必要かというと、「どうやって、集中力がなくなるのを避けるか」ということだと思うのです。得意不得意は仕方のないことですが、このように考えて努力を続けることは、ほとんどの人はできると思います。そして、このように考えてやり続けるかどうかが、結果に必ず影響してきます。

 

あと、間違えないように言っておきますが、「ずっと集中し続けろ」ということではありません。メリハリをもたないと人間は伸びません。休まなければ死んでしまいます。ここで言いたいことは、「自分で集中する時間を決めたら、その間は集中し続けて欲しい。」ということです。

難しくいえば、「自分で時間を管理して欲しい」ということです。

 

ふたつ目の注意点は、「丸付けするときは答えを覚えない」ということです。ただ単純に、○×をつけることに集中してください。

この練習では、答えを覚えてしまっては練習の意味がなくなってしまいます。でも、この練習は同じ問題でかかる時間を短くすることも大切な目標になっています。

ですから、あえて覚えないように採点だけに集中して欲しいのです。練習問題動画では、解答を1分間だけ映していますが、これにも意味があるということです。動画を一時停止せずに1分以内に丸つけが終わるように集中しましょう。

丸つけが終わったら、得点と時間のグラフに記入して折れ線グラフをつくります。もちろん、早く終わった人は、集中力を切らさないように自分でやることを考えてください。

 

◆ 記録用紙と問題用紙を差し上げます  ◆

最後に、記録用紙と問題用紙を作成したエクセルファイルまたは pdf ファイルを入手する方法を紹介します。自作すればすぐできる簡単なものですが、もしよろしければ、自由に使ってください。人にやるのも、改変も自由です。

以前、これらのファイルはコメントで希望を書いてもらって差し上げるパターンを取っていたのですが、各自で入手できるよう準備が整いましたので、以下の記述を参考にしてください。

なお、使用するブラウザは Microsoft Edge 42.17134.1.0 を前提に記述しています。

① 動画一覧から 1章~正の数・負の数 へ移動し 1106_01 の行に移動する。

② ダウンロードできるファイル名は青色でアンダーラインがある。

③ 目的のファィル名にマウスのカーソルを置いて左クリック。

④ エクセルと pdf では反応が違う。

エクセルは、ダイアログが開くので、Excelを開くか保存するか選択する。

pdf は自動的に開くので、画面上で右クリックして印刷か保存かを選択する。

ブラウザやそのバージョンによって動作は変わるかも知れませんが、基本は同じです。

 

それでは、今回はこれで終わりです。練習頑張ってください。

 

数学動画教材1105_01「テーマ:加法の素早い計算方法が理解できる」について

◆ はじめに ◆

今回は、数学動画教材1105_01「テーマ:加法の素早い計算方法が理解できる」の内容について少し詳しく説明します。

中学校数学を学ぶ人が動画教材を見てからノートにまとめるときに参考になるような内容を目指すとともに、教える人の目線でも参考になるように考えて記事を書いたつもりです。いずれも2πr(にーぱいあーる)の見解でしかないのですが、よかったら参考にしてください。

また、この動画教材を使った自分なりの勉強の仕方で迷っているときは、ブログ「動画教材を使った勉強の仕方」を参考にしてください。サイト内検索で探す場合は、カテゴリー「勉強の仕方」で検索するとすぐ見つかります。アーカイブ(月単位)ならば「2018 6月」で検索してください。

 

動画教材へのリンク 1105_01_加法の素早い計算方法が理解できる_説明_by_2πr(にーぱいあーる)

動画教材へのリンク 1105_01_加法の素早い計算方法が理解できる_練習問題_by_2πr(にーぱいあーる)

◆ 最も大切なことは2つ  ◆

今回のテーマで最も大切なことは、「自信を持って、一番最初に答えの符号を決めることができる」ということです。「一番最初に」がポイントです!

中学校では、たし算やかけ算のような基本的な計算では「最初に答えの符号を決める」ことに慣れる必要があります。正の数・負の数を学んだわけですから、答えもプラスかマイナスのどちらかになります。(0になることもたまにありますが) 「その答えの符号が先にわかれば、あとはなんとかなる」という感覚をぜひ身につけてください 。必ず、計算に慣れれば慣れるほど、このことが大切だとわかってきます。

最も大切なことは、実はもうひとつあります。それは「注意深さ」です。

慣れてくると「うっかり、減法なのに加法に直さずに同符号・異符号の2数の和を使って計算してしまう」ミスがよく見られます。せっかく理解して、覚えて、使えるようになっても、この最初の段階でミスをすることが意外に多いのです。また、これはとてももったいない話です。

ですから、常に「減法だったら加法に直す」という気持ちを持って問題を見るようにしてください。練習問題動画教材は、そのことに気づいて欲しいと考えて制作されています。ポイントは「一番最初よりも最初に」です。

どうでしょう? 練習問題を見て、「もし減法だったら、まず加法に直さないと!」という気持ちで問題を見ていましたか?

最初からこのことを意識していた人は、「なかなかセンスあり」です \(^_^)/

 

◆ 加法は4つのパターンで考える ◆

答えの符号を決める考え方ですが、説明動画で説明してある通りです。この動画での説明は、正の数・負の数の加法を4つのパターンに分けて数直線で考えるのですが、実は、「負の数 たす 正の数」、「正の数 たす 負の数」、「負の数 たす 負の数」の3つのパターンしか説明していません。

なぜかわかりますか?

それは、「正の数 たす 正の数」は小学校でやってきたパターンだから説明するまでもないと考えたからです。その点も理解したうえで、しっかり読み込み、練習問題に取り組むと理解しやすくなります。

では、3つのパターンについて簡単な解説をつけておきます。

※厳密に考えるともう少しパターンは多くなるのですが、そこら辺は、興味のある人が自分で考えてみてください (^_-)v ・・・もちろん、結論は同じになります。

1枚目の説明 (1) は、「負の数 たす 正の数」で「負の数の絶対値の方が大きい場合」、つまり「負の方向に動く距離の方が大きい場合」を考えています。

2枚目の説明 (2) は、「負の数 たす 正の数」で「正の数の絶対値の方が大きい場合」、つまり「正の方向に動く距離の方が大きい場合」を考えています。

(1) も (2) も、「異符号の2数の和」ということになります。どちらも、答えの符号は最終的に到着した場所の符号ですから、「答えの符号は、絶対値の大きい方の数の符号と同じになる」ことがわかります。

このことを、「異符号の2数の和は、絶対値の大きい方の符号が答えの符号になる」とまとめて表現します。

そして、答えの数字部分(絶対値)は、(1) と (2) の図からわかるように「2数の絶対値の差」となります。ちなみに、差とは「大きい数 ひく 小さい数 の答え」のことで、結局は「小学校のひき算の答え」のことです。

以上のことから、答えの符号と答えの絶対値の求め方をできるだけ短い文章で表すと、

異符号の2数の和は、絶対値の大きい方の数の符号に、絶対値の差をつければ求められる

となります。数学が苦手ではない人は、数直線の図とこの文章を、計算をするたびに思い起こしてなれてください。数学が苦手な人は・・・。

 

◆ 数学が苦手な人は、どうやって数学の文章になれればいい? ◆

少し話がそれますが、2πr(にーぱいあーる)は、数学は「母国語の力が重要な学問」だと考えています。なぜならば、数式や数学独特の言葉遣いを理解する前には必ず、頭の中で毎日使っていることばで自分なりの表現をしているはずだと思うからです。もちろん、図や式でイメージが浮かんでいる人もいるはずですが、まったく母国語を使わずに考えている人はいるのでしょうか?

2πr(にーぱいあーる)は、特殊な人を除いて、いないと考えています。

話をもとに戻します。

数学が苦手な人は、「異符号の2数の和は、絶対値の大きい方の数の符号に、絶対値の差をつければ求められる」をどうやって身につければよいのでしょう?

2πr(にーぱいあーる)は、「まず、自分なりのことばで表現」してみることが大切だと思います。たとえば、

「符号の違う2つの数のたし算の答えは、答えの符号は数字部分の大きい方の符号になるから、それを一番最初に考える。そして、答えの数字部分は2つの数の数字部分をひき算して求める」

といった表現にしてみるのです。練習問題の途中計算を書くとき、この文章を繰り返し思い出しながら考え方に慣れることが、「理解の第一歩」です。

この文章は、少々長くてもかまいません。自分なりのことばで、できれば、自分が大切だと思うポイントをいれながらまとめることが大切です。この場合は、「・・・それを一番最初に考える。そして・・・」が自分が大切だというポイントです。ちなみに、こういったことを書き込むノートの場所は、右ページの「気づいたこと」や「自分なりのまとめ」のどちらかに、自分の決めたルールにしたがって書き込みましょう。

このように、自分なりの表現で考え方を理解してから、「異符号の2数の和は、絶対値の大きい方の数の符号に、絶対値の差をつければ求められる」という数学的な文章に最終的になれればよいのです。

日本人は国語を大切にしましょう。自分の考えたことを自分と他人に伝える大切なアイテムですから。

 

そういえば、3つのパターンについて簡単な解説をしていましたね。

3つ目のパターンの解説に戻ります。

3枚目の説明 (3) は、「負の数 たす 負の数」の場合です。この場合の答えの符号は、「負の方向に行って、さらに負の方向に行く」わけですから、必ず答えは負になることがわかります。

答えの絶対値は、2つの数の絶対値をたした距離だけ動くので、「2つの数の絶対値の和」となります。

スライドでは説明していませんが、「正の数 たす 正の数」つまり小学校でやってきたたし算も、「答えの符号は、2つの数に共通な符号プラス」、「答えの絶対値は、2つの数の絶対値の和」のように、文章でまとめることができます。

以上のことから、同符号の2数のたし算の答えは、「同符号の2数の和は、共通の符号に、絶対値の和で求められる」という文章でひとまとめにすることができます。

まとめのスライドにある文章が、最終的なまとめの文章になります。この文章が必要な場面ですぐ思い浮かび、数直線や途中計算が書けるようになってください。

 

 


2つの数の和の求め方

 「異符号の2数の和は、絶対値の大きい方の数の符号に、絶対値の差」

 「同符号の2数の和は、共通の符号に、絶対値の和」

  で求められる!


 

 

◆ 練習問題動画で注意すべきこと ◆

あとは、「再確認」とあるスライドの通り、(1) ならば「符号だ→答えの符号はマイナスだ→答えの数字は絶対値の差だ」のように考えて答えを出してください。

何度も繰り返しますが、最初に答えの符号を考えてください。そして、それよりも前に「加法であることを確認」してください。減法だったら必ず加法に直して計算することをセットで意識して、練習に取り組みましょう。

 

以上のことをまとめると、スライドにあるような表現になります。もちろん「加法かどうか確認することを忘れずに!」がポイントですね。

 

今回は、以上です。

 

数学動画教材1104_01「テーマ:ひき算はたし算に直せることが理解できる」について

◆ はじめに ◆

今回は、数学動画教材1104_01「テーマ:ひき算はたし算に直せることが理解できる」の内容について少し詳しく説明します。

中学校を学ぶ人が動画教材を見てからノートにまとめるときに参考になるような内容を目指すとともに、教える人の目線でも参考になるように考えて記事を書いたつもりです。いずれも2πr(にーぱいあーる)の見解でしかないのですが、よかったら参考にしてください。

また、この動画教材を使った自分なりの勉強の仕方で迷っているときは、ブログ「動画教材を使った勉強の仕方」を参考にしてください。サイト内検索で探す場合は、カテゴリー「勉強の仕方」で検索するとすぐ見つかります。アーカイブ(月単位)ならば「2018 6月」で検索してください。

 

動画教材へのリンク 1104_01_ひき算はたし算に直せることが理解できる_説明_by_2πr(にーぱいあーる)

動画教材へのリンク 1104_01_ひき算はたし算に直せることが理解できる_練習問題_by_2πr(にーぱいあーる)

◆ 中学校数学を理解する第一歩  ◆

今回のテーマでは、数直線上を歩く人をイメージして「顔の向きを考えると、同じ動きが2種類ある」ことを理解できることが最も重要となります。そのためには、今まで考えてきたことすべてが理解できていることが大切です。

このような理由から、このテーマを理解することが、中学校数学を理解する第一歩だと考えてください。

最初のスライドに「復習(もっとも大切)」とタイトルされているのは、このような意図があります。復習のためのスライドは、3枚用意しました。

3枚目のスライドは、前回のテーマの内容をまとめている図ですが、もし「たし算とひき算が同じ動きをしている」ことに気づいていたあなたは、なかなかよいセンスを持っています。

それこそが、「たし算はひき算に直せる」し、逆にいえば「ひき算はたし算に直せる」ということを示していることになるからです。このあたりの説明は、動画教材を見てもらえれば十分だと思います。

そして、そんな便利な性質があるなら、「ひき算はすべてたし算に直してから計算しよう」となったわけです。

※ これからは、たし算は「加法」、ひき算は「減法」という専門用語を使います。

「減法は加法に直す」ことになった理由は、3つ考えられます。

① 「加法を素早く計算する方法がある」から。

② 加法と減法が混じった計算は、加法だけにして計算した方が「楽をするための工夫ができる」から。

③ 加法の記号 +(たす)を省略する書き方「項を並べた式が発明された」から。

これら3つについては、別な場所で詳しく説明します。

①は、次の動画教材のテーマです。「同符号の2数の和、異符号の2数の和」という計算方法ですが、2πr(にーぱいあーる)は簡単に「同符号の和・異符号の和」ということがあります。

②については、別なテーマで触れます。「加法の交換法則」、「加法の結合法則」というルールをうまく使うことで計算が簡単になることもあるという内容です。

③については「発明された」と表現しましたが、誰がいつ決め、どのように広がったのかについては全くわかりません。根拠がありませんので、2πr(にーぱいあーる)が勝手に想像したと考えてもらって結構です。ただ、このように説明すると「項を並べた式」が理解されやすいと考えています。「項を並べた式」についても別なテーマで詳しく触れます。

 

◆ ルールは覚え方が大切 ◆

加法を減法に直すルールは、「ひくマイナス」は「たすプラス」に、「ひくプラス」は「たすマイナス」に、それぞれ変えてよいというルールです。このルールは、図で理解してから覚えることが大切です。そして、できるだけ短い文章で覚えた方が楽ができます。

このように考えて、スライドにあるように「ひき算は、ひく数の符号を変えてたし算に直す」と覚えてください。

『「ひくマイナス」は「たすプラス」に直す、「ひくプラス」は「たすマイナス」に直す』という2つの場合を短い文章で表しているから楽というだけでなく、短い文章で記憶すると「頭の中が整理されてくる」からです。

人に教えるときは、『「ひくマイナス」は「たすプラス」に直す、「ひくプラス」は「たすマイナス」に直す』と説明した方がよい場合があります。

頭の中では短い文章で記憶して、説明するときは、やさしい表現を使うことができる・・・ここまでできるようになって、「人に教えるくらい理解できた」といえると思います。

後は、スライドにある通り「中学校ではひき算はたし算に直して計算」しますから、スラスラと直せるように練習に取り組んでください。

ここは「練習あるのみ!」です。

 

今回は、以上です。

 

数学動画教材1103_01「テーマ:正負の符号、たし算とひき算の意味が理解できる(数直線)」について

◆ はじめに ◆

今回は、数学動画教材1103_01「テーマ:正負の符号、たし算とひき算の意味が理解できる(数直線)」の内容について少し詳しく説明します。

中学校数学を学ぶ人が動画教材を見てからノートにまとめるときに参考になるような内容を目指すとともに、教える人の目線でも参考になるように考えて記事を書いたつもりです。いずれも2πr(にーぱいあーる)の見解でしかないのですが、よかったら参考にしてください。

また、この動画教材を使った自分なりの勉強の仕方で迷っているときは、ブログ「動画教材を使った勉強の仕方」を参考にしてください。サイト内検索で探す場合は、カテゴリー「勉強の仕方」で検索するとすぐ見つかります。アーカイブ(月単位)ならば「2018 6月」で検索してください。

 

動画教材へのリンク 1103_01_正負の符号、たし算とひき算の意味が理解できる(数直線)_説明_by_2πr(にーぱいあーる)

動画教材へのリンク 1103_01_正負の符号、たし算とひき算の意味が理解できる(数直線)_練習問題_by_2πr(にーぱいあーる)

◆ たし算、ひき算の意味 ◆

3+1=4 は「3たす1は4です」という意味ですが、大きさを考えると「3より1つ大きな数字は4です」という意味にもなると理解できます。このことを数直線で考えれば、「3を出発して右に1進むと4に着く」となります。
また、3-1=2 は「3ひく1は2です」という意味ですが、大きさを考えると「3より1つ小さな数字は2です」という意味にもなります。数直線で考えれば、「3を出発して左に1進むと2に着く」となります。
つまり、「たし算は数直線上を右に進むこと」、「ひき算は数直線上を左に進むこと」となります。これらは、小学生でも理解できる基本的な説明の仕方だと思います。
普通はこれで納得してしまうのですが、2πr(にーぱいあーる)はここに落とし穴があると考えていました。
「納得しやすいがために、数直線上を人が動くときの顔の向きにまで目を向けることがなくなったのではないか?」ということです。それが、しいては「減法が加法になることが記憶に残らない原因」につながっているのではないかと考えていました。

◆ 顔の向きを考えると・・・ ◆

では、顔の向きを考えるとどうなるのでしょう?
顔の向きは、「正の方向」または「負の方向」を向く2通りあります。当然、「正の方向を向くことを+(プラス)」と決めれば、「負の方向を向くのは-(マイナス)」となります。
となれば、数直線上を動く人を考えるとき、すべての場合は4通りあることになります。
この4通りの見つけ方が、説明スライドの最後「◆ 頭をよくするテクニック」です。
表の 例、2番目、3番目、4番目 は、それぞれが最初のスライドの 例、2番目の解答、3番目の解答、4番目の解答 を表しています。
この動画教材を1~2回見てこのことが理解できていれば、あなたはなかなかのものです。自信を持っていいと思います。

 

◆ 正負の符号、たし算とひき算の意味 ◆

こうして、正負の符号、たし算とひき算の意味を理解する準備が整いました。
ここまでのことを自分で気づいてもらいたいと、問いかけた質問が最初のスライドです。
もちろん時間も短いですから気づかないのが普通です。よく説明を見て理解できればそれでOKです。
でも、最初のスライドを見て「ピン」ときた人は、頭の柔らかさを見せた人だと思います。いわゆる数学的センスがある人かもしれません (^_^)v

数学だけではありませんが、当たり前と思われていることを別な角度から見て考えることを続けると、頭というものはよくなってくるのだと思います。(もちろん、記憶力とは別です)

話はそれてしまいますが、次元という言葉を知っていますか?
0次元は点、1次元は直線、2次元は平面、3次元は空間、4次元は空間と時間・・・というふうに2πr(にーぱいあーる)は認識していますが、5次元、6次元・・・と広げたり、-1次元、-2次元・・・を考えたり、0.5次元などの小数次元を考えたりする発想(妄想?)が大切だと思います。
それがあるかないか、正しいか正しくないか、は後でわかることです。そして、正しい理由を冷静に考えていく姿勢が大切だと思います。
数学は、考えたことを記述するためにある言語ですから、数学の言葉で考えたことを組み立てていくことが「冷静に考える」ことになります。
今、知られていることの多くは、一般の人は考えても見なかったことを、じっくりゆっくり冷静に考え続けたり、ときにはパッとひらめいて、うまく現実に合っていることを冷静に確かめて世界に広まったものです。
昔の人は「地球は丸い」などと考えていなかったことを知っていますか? 現代の人にとってそんなことは幼児の考えだと笑う人もいるかもしれませんが、それが常識だった時代もあったことを考えると、「もし・・・だったら」という発想はとても大切なものだと思いませんか?
ちなみに、物理の世界では、次元は11次元まで議論されているようですが、その詳細は2πr(にーぱいあーる)には理解できません。しかし、最先端の物理学で、10次元だ、11次元だ、と議論されて、どうやら11次元らしいというところまで来ているということが重要です。なぜなら、このことから「自由に発想することの大切さ」を 2πr(にーぱいあーる)は改めて感じるからです。
まぁ、2πr(にーぱいあーる)的には「次元は無限にある」方がしっくりくるのですが・・・もちろん、直感ですけど (^^ゞ

話を元に戻しますね。

正負の符号、たし算、ひき算の意味がわかったところで、実際の計算と結びつけているのが、2枚目、3枚目のスライドです。
ここで注意してもらいたいのは、「0を出発して」という条件です。

何ごとも基本が大切ですから、「0を出発して」という条件で最初は考えてほしいということです。
そして、このときの「0からの距離」を「絶対値」と呼びます。絶対値は、正負の数の符号を取った数字部分と考えてもOKです。この用語は、後で学ぶ 1105_01_正の数・負の数【加法の素早い計算方法が理解できる】で使われるので、ここで軽く紹介しています。
また、ここが理解できれば「減法がなぜ加法に直せるのか」を理解できます。自分なりに考えをまとめて次のテーマに臨んでもらうと、すばらしいなと思います。
あとは、特に説明することはありません。スライドをよく見てください。

 

◆ 0を出発しない場合 ◆

「0を出発して」考えることになれたら、次の段階は「0以外を出発して」計算することを考えてみます。その説明部分が、説明動画の後ろから2枚目のスライドです。
ここでの考え方のポイントは、ただの3という数字は「0+3」と考えてよい、3+2という計算は「0+3+2」と考えてよいということです。
こう考えると、正負の数の加法・減法すべてが「0を出発して」考えることができるようになります。
3+2+1のように数字が増えても同じ考え方で理解することができます。
どんな加法・減法も数直線上にいる人の動きで表すことができるなんで、すごいことだと思いませんか? つまり、人の動きを式だけで言い表すことができるということですよ。それも、とても短い表現で・・・
3+2+1を日本語で説明すると、「人は正の方向を向いて、0を出発して3進んだ。次に3を出発して2進んだ。さらにその場所から1進んだ。」と、まるでゲームの勇者の動きの説明ような、長い文書になってしまいます。でも、数式なら「3+2+1」だけでOKです。

この「式は物事を簡単に表すことができる」ということが、実は数学が生き残ってきた大きな理由です。日本語や英語で詳しく説明すると膨大な文書量になる内容でも、とても簡単に表現することができるということは、難しいことを考えれば考えるほど、数学のよさが身にしみるようになるということですから。
尤も、その分、一般の人には理解しにくくなる傾向はありますが、それは、日本語や英語で記述しても同じことですから、やはり数学の言語としても能力は高いのかと思います (^_^)v

また、脱線してしまいました。済みません (^^ゞ

ここでの内容も、後で学ぶ 1105_01_正の数・負の数【加法の素早い計算方法が理解できる】で使われます。
数学では、すべての内容が次の内容を考える基礎になります。だからこそ、数学は最初の基本をしっかり理解する必要があります。油断せずに、練習問題をすらすら解けるだけでなく、「ここはこう考えてこうなるんだ」と説明できるようになってください。

 

◆ おまけ 加法の教え方はいろいろあるけど・・・ ◆

以上で、このテーマで書きたいことは終わります。
いろいろ脱線したので、脱線ついでに数学を教える人を対象に、2πr(にーぱいあーる)の考えていることを少し紹介します。
興味がなければ、ここはこれで終わってもらって結構です。

加法(たし算)の教え方はいろいろあります。
① 数直線上で、「たす」が右へ進む、「ひく」が左へ進む、であることを理由に教える。
② ○をプラス、●をマイナスと考え、視覚的に捉えさせて、教える。
③ トランプの得点をプラス、減点をマイナスとして、教える。
などなど・・・
しかし、このように加法だけに重きを置いて教えることに疑問を感じていました。

中学校では、「数直線 → 数の大小 → 加法 → 減法」のような順序で加法・減法を教えることが多いと、経験的に感じています。
2πr(にーぱいあーる)も現役時代はほぼこの順序で教えてきました。しかし、この順序で教えると、どうしても「減法が加法に直せる理由」を印象に残せないと感じていました。
生徒にとっては、減法が加法に直せることをとにかく覚えて、加法で学んだ「同符号の和、異符号の和」を使ってスラスラ計算できるようになればよいわけですから、「なぜ、減法は加法に直せるのか?」なんて、生徒にとってはどうでもよいことになってしまうということです。
実際、「減法を加法に直す手順」や「同符号・異符号の2数の和」を覚えることに精力を注ぎ、覚えた頃には「減法が加法に直せる理由」なんで遠い過去のことになり、ましてや「なぜ?」と考える余裕なんてない生徒がほとんどだと思います。みなさんはどう感じていますか ?

このようなことから、そもそもの原因は加法・減法の教え方にあるのかもしれないと考えたのです。つまり、加法と減法を一緒に理解できればしっかり印象に残せるのではと考えて、できあがったのが今回の103_01動画教材です。

※ 数直線を使う「加法の教え方①」は、103_01の教え方に似ていますが、動く人の向きを考えていないので全くの別物ですので明確に区別してください。

103_01の教え方は以前から頭にあったので、たまに授業の流れの中で使えそうな部分を使って教えることもありました。しかし、最初から授業を組み直して授業時数内にうまく納められるか、期待通りに加法・減法を同時に理解してもらえるか、多忙な中で時間をつくり出せるか、といったことを考えると、なかなか踏み切れないでいたのです。

もし、この教材を使って教えてくれる方がいて、いろいろご意見をいただければ、より使える教材に成長するかもしれません。単元全体の流し方を自分なりに消化できる方は、よかったら取り入れてみてください。

また、向きを意識した考え方は実はとても重要です。中学生にはまだ早いですが、向きを考えることで数式の意味を視覚的に理解できることもよくあります。
後で出てきますが、負の数をかけるとは「向きを変える」という意味を持ちます。図で考えると「数直線上の矢印の向きを180°変える」ということになります。

以前、「同じ数字を2回かけると-1になる数」つまり「虚数」という数を高校で習うとお話ししました。この虚数を1つかけるとは「数直線上の向きを90°回転する」と解釈すると理解しやすくなります。虚数に虚数をかけるとは、90°回転して、また90°回転することになりますから、結局180°回転したことになります。つまり-1をかけたことと同じになるという感じです。
このように、難しい数学を考えるときにイメージをつかむためにも方向を意識した理解はとても重要です。

今回は、以上です。

 

【番外編】数学動画教材1103_02「リズムに乗って数直線上の人になりきろう」 について

◆ はじめに ◆

今回は、数学動画教材1103_01のテーマ「正負の符号、たし算とひき算の意味が理解できる(数直線)」を習熟するための練習方法を紹介します。「こんな動画教材どうですか? テーマで学ぶ中学校数学」シリーズの番外編となります (^_^)v
2018年7月2日に突然浮かんだので、急遽、考えを伝えるためにつくってみました。
リズムに合わせて数直線上の人になりきって動くのですが、そのやり方を説明する動画です。

 

1103_02_◆ダンスで練習の説明◆リズムに乗って数直線上の人になりきろう_by_2πr(にーぱいあーる)
先生に一番最初に見てもらいたい動画です。どんな練習なのか、先生がどこでどんな指示をしたらいいのかがわかるように配慮しました。

1103_02_◆ダンスで練習◆リズムに乗って数直線上の人になりきろう_by_2πr(にーぱいあーる)
生徒に見せて実際に練習するためにつくりました。

◆ 自由なアレンジが大切です ◆

手拍子を続けながら、先生が「向き!」といったら向きを変え、「いち、に、さん、ハイ!」で答えの数だけ前進または後進・・・。これクラス全員できれいにできると楽しいかも。と思ったのが、この動画教材をつくったきっかけです。

本当に「練習として効果があるのか?」については、わかりません。ですから、「面白そうだ」と思って実験してくださる方がいて、その成果や課題をブログにコメントとして投稿してもらうとありがたいです。

ずっと手拍子をしながら、考えて動くので、慣れないとなかなか難しいです。また、「ハイ!」で全員向きを変える場面をどううまくそろえるのかも難しいと思います。

でも、やり方さえ理解できれば、あとは好きなようにアレンジしてもらってかまいませんので、きっと面白いものができると期待しています。
大切なことは、みなさんの発想力です。みなさんで自由に工夫して、楽しいものにしてもらえればと思っています。

なお、生徒だけで練習するのも当然ありなので、面白そうと思ったら、自由にやってみてください。

 

 

◆ 動画投稿するなら、著作権に注意! ◆

本当は、この練習は音楽と合図だけでできます。つまり、動画はいりません。そうすると、曲を変えたい、問題は即興でいきたい、体育館でのびのびやりたい、などと考えるようになると思います。
もちろんOKです。ここまでは、自由にやってください。

しかし、「練習の様子を動画にとって公開したい (^^)/」と考えたときは、ちょっと待ってください。
考えずに突き進むと「練習の様子を動画にとって後悔したい (;_;)」となってしまいます。
どういうことかというと、「著作権に注意してください」ということです。

この動画教材のBGMは HURT RECORD さんの許可を得て使わさせてもらっています。
でも、あなたがこの動画教材を使って練習の様子を録画すると、無断で HURT RECORD さん曲を使用したとになる可能性が高いです。ですから、もし You Tube などに投稿しようとするときは、念のため HURT RECORD さんにメールで許可をもらってください。
HURT RECORD さんは、「BGM・効果音は、商用・非商用に関わらず 著作権フリー&無料 です!」となっていますので、連絡すれば基本的に許可がいただけます。また、希望すれば HURT RECORD さんのサイトで動画を紹介していただくこともできます。

当然ながら、他の曲を使用するときは、その曲の著作権を調べて対応してください。

 

 

◆みなさんのコメントが貴重な資料になります◆

実際にやってみてくださった方は、是非、その様子や効果などについて、このブログにコメントの形で投稿願います。

そのコメントに、練習の様子を撮影した動画のリンクが貼ってあると、もっと嬉しいのですが、この場合は、音楽以外に映っている人の肖像権に配慮が必要かと思います。(念のため)

投稿が集まれば、「こんな感じでやればいいんだ」とか、「ここを注意ないと」といった情報が共有できるかと思います。ご協力お願いします。

 

今回は、以上です。

数学動画教材1102_01「テーマ:数の大小を不等号で表すことができる」について

1.◆ はじめに ◆

今回は、数学動画教材1102_01「テーマ:数の大小を不等号で表すことができる」の内容について少し詳しく説明します。

中学校数学を学ぶ人が動画教材を見てからノートにまとめるときに参考になるような内容を目指すとともに、教える人の目線でも参考になるように考えて記事を書いたつもりです。いずれも2πr(にーぱいあーる)の見解でしかないのですが、よかったら参考にしてください。

また、この動画教材を使った自分なりの勉強の仕方で迷っているときは、ブログ「動画教材を使った勉強の仕方」を参考にしてください。サイト内検索で探す場合は、カテゴリー「勉強の仕方」で検索するとすぐ見つかります。アーカイブ(月単位)ならば「2018 6月」で検索してください。

 

1102_01_数の大小を不等号で表すことができる_説明

1102_01_数の大小を不等号で表すことができる_練習問題

2.◆ このテーマで一番大切なこと ◆

日本語も英語も、世界中の言葉すべてには主語と動詞があります。中学1年生にはすこし難しいかもしれませんが、簡単に言うと、「わたしは」「あなたは」などの言葉が主語で、「~する」「~している」などを意味する言葉が動詞です。
主語だけでは、その人が何をするのか伝わりません。動詞だけでは、誰がやっていることなのか伝わりません。このように相手に何かを伝えるときは必ず「主語と動詞がセット」になっています。
実は数学も、日本語や英語とほとんど変わらない言葉なのです。なぜならば、数学も考えたことを人に伝える道具だからです。
このテーマで一番大切なことは、不等号を使って正の数・負の数の大小関係を人に伝えることができるということです。そして、そのために不等号を「動詞」と考える発想が大切だと2πr(にーぱいあーる)は考えています。

3.◆ 次に大切なこと ◆

次に大切なことは、日本語や英語と同じように、数学も同じことを伝えるのにいろいろな表現方法があるということです。つまり、答えがひとつでないこともあるということを理解することです。
例えば、「5は3より大きい」は、「3は5より小さい」と表現しても、その大小関係は同じように人に伝わります。注目している主語が、5なのか3なのかというだけのことです。
数学では、「5は3より大きい」を「5>3」、「3は5より小さい」を「3<5」と表現するので、どちらを答えても正しいということになります。
日本語がわかる人は、必ず数学もわかるということですね。

ちなみに、この不等号は英語の動詞と使い方がよく似ています。そこら辺は、英語をもっと勉強するとわかるようになります。

以上のことから、不等号の問題では「他に答えはないかな?」と考える癖をつけてください。

◆ 3つ以上の数の大小 ◆

3つ以上の数の大小を表すときは、説明動画で示したことで十分です。日本語がわかればまず大丈夫でしょう。

でも、ひとつだけ確認したいことがあります。それは、

「-3<0<4 と 4>0>-3 を数直線で考えるとどうなるかわかりますか?」ということです。・・・以外に難しいでしょ?

この答えは、「目盛りのつき方が逆の数直線」を思い浮かべるとわかってきます。

説明はしないので、数直線をよく見てください。

 

4.◆ 最後に ~ xを使った不等式 ◆

最後に、数直線を使って大小関係を考えるとき、知っておいてほしいことを紹介します。それは「数字をグループで考えることもある」ということです。

練習問題動画の問題1(1) にxを使った問題があります。ここでのxは、その状況にあった数全部を表しています。

例えば x<2 を考えてみると、この式は「xは2より小さい数のグループ全部を表している」と考えます。このことを、数直線で考えると図のようになります。この図では、xの範囲を矢印で表していますが、数直線を太線にしてxの範囲を表すこともあります。

そして、押さえておきたいことは、> と ≧ の表現の違いです。xの範囲に2が入らないときは>、2が入るときは≦をつかいます。

ちなみに、不等号を使った式を「不等式」と呼びます。この不等式の関係を数直線で表すときは、「> や <  は白丸、 ≧ や ≦ は黒丸 を使う」ことになっています。

また、 x<2と同じ大小関係を表している2>xは「2はxより大きい」と表現しますが、個人的には『xを主語にして「xは2より小さい」と表現することが多い』ように感じています。そこで、動画教材(練習問題)ではあえて「xを主語にすることが多い」と書いておきました。

1102_01練習問題1(5)です。

 

今回は、以上です。

追記

x≦2は「xは2以下」と表現することが多いですが、慣れるまでは常に「xは2より小さいかまたは等しい」という正確な表現を使うと、意味をはっきり理解できるのでお勧めです。