数学動画教材1110_01「テーマ:分数の加法が正確に計算できる」について

◆ はじめに ◆

中学校数学を学ぶ人が、動画教材を見てからノートにまとめるときに参考になるような内容を目指すとともに、教える人の目線でも参考になるように考えて記事を書いたつもりです。いずれも2πr(にーぱいあーる)の見解でしかないのですが、よかったら参考にしてください。

また、この動画教材を使った自分なりの勉強の仕方で迷っているときは、ブログ「動画教材を使った勉強の仕方」を参考にしてください。サイト内検索で探す場合は、カテゴリー「勉強の仕方」で検索するとすぐ見つかります。アーカイブ(月単位)ならば「2018 6月」で検索してください。

動画教材へのリンク 1110_01_分数の加法が正確に計算できる_説明_by_2πr(にーぱいあーる)

動画教材へのリンク 1110_01_分数の加法が正確に計算できる_練習問題_by_2πr(にーぱいあーる)

これで計算力は十分

今回のテーマのねらいは、「分数の加法計算を通して今までの計算を確実に身につけてほしい」ということです。

分数の加法計算と書きましたが、「見た目が減法」でも、「項を並べた式とカッコのある式が混じった式」でも、最終的には「項を並べた式」つまり加法として計算するので、結局は分数の加法計算がすらすらできるようになればすべてOKということです。

そして、分数の加法計算には今まで習ってきた計算テクニックが必要になります。つまり、分数の加法計算が正確にできれば、今まで習った計算テクニックが身についているといってもいいのです。

逆にいえば、分数の加法計算ができるように努力すれば、今まで習った計算テクニックがすべてできるようになるということです。

分数の加法計算が正確にできれば、計算力は申し分ありません。計算が得意な人は「速く正確に」を目標に、計算が苦手な人は「正確に」を目標に、確実に答えが出せるように練習してください。

今回の動画教材では、

分数の計算では小学校で習った通分と約分は避けて通れませんから、最初にその確認をしました。しかし、機械的に思い出すだけでは意味がないので、分数の意味と性質を簡単に説明しました。

分数の意味といってもあまり堅苦しい説明だと直感的に理解できないので、動画教材では「分数は、1をいくつに分けた何個分なのかを表す数字」のように説明をしています。

これを、「分数とは、整数 a 0 ではない整数 b でわった答えを a /b で表したもので、わり算を表しているともいえる。 また、0 ではない整数 b でわるということは、0でわることは考えないということ。下の整数 b を分母、上に整数 a を分子という・・・」などと説明したら、見るのやめますよね (^_^;

それに、小学校でどの程度習っているのかも人によって違うでしょうから・・・

しかし、「0で割ることは考えない」という点はとても重要で、後で必ず役に立ちますから覚えておきましょう。

また、「分数はわり算(除法)を表している」ということも、あわせて覚えておくべきことです。

これらについては、これからの計算にも必要なことなので、次の段落で少しくわしく説明します。

 

◆ 0でわること ◆

なぜ「0でわることは考えない」のかは、次のように考えると理解できます。

まず、わり算(除法)の意味を考えましょう。

 

6÷2=3 は、「○が6あるとき、2ずつ分けると何グループできますか? 3 です。」という意味になります。

○○○○○○ ÷ ○○ = ○○、○○、○○の3グループ

 

このことを理解したうえで、わる数を、6、3、2、1、0.5、0.1、と小さくしてみます。

 

6÷6=1 は、「○が6あるとき、6ずつ分けると何グループできますか? 1です。」

○○○○○○ ÷ ○○○○○○ = ○○○○○○の1グループ

6÷3=2 は、「○が6あるとき、3ずつ分けると何グループできますか? 2です。」

○○○○○○ ÷ ○○○ = ○○○、○○○の2グループ

6÷2=3 は、「○が6あるとき、2ずつ分けると何グループできますか? 3です。」

○○○○○○ ÷ ○○ = ○○、○○、○○の3グループ

6÷1=6 は、「○が6あるとき、1ずつ分けると何グループできますか? 6です。」

○○○○○○ ÷ ○ = ○、○、○、○、○、○の6グループ

 

次は、「わる0.5」 つまり 「わる2分の1」 です。

答えは、6÷0.5=12 になりますが、その意味は、

「○が6あるとき、0.5ずつ分けると何グループできますか?」

「1の中には0.5が2グループできるので、6の中には12です。」

 

 

最後に、「わる0.1」 つまり 「わる10分の1」 です。

答えは、6÷0.1=60 になりますが、その意味は、

「○が6あるとき、0.1ずつ分けると何グループできますか?」

「1の中には0.1が10グループできるので、6の中には60です。」

 

どうでしょう? 当然ながら、わる数が小さくなればなるほど、6の中にはわる数がたくさん入っていることになります。つまり、できるグループ数が多くなります。

ということは、わる数が0に近づけば近づくほど、答えは非常に大きな数になることがわかります。

最終的には、答えは数字ではなく、無限大(infinity )としてごまかすしかなくなります。

こう考えると、0でわるということは答えはが出せないという結論になってしまいます。

だから「0でわることは考えない」というきまりになったと理解しておいてください (^_^)v

 

◆ 分数はわり算 ◆

分数はわり算(除法)を表している」ということは、次のように考えて理解してください。

 

6÷2は3になります。6/2(2分の6)も3になります。

6÷3は2になります。6/3(3分の6)も2になります。

6÷1は6になります。6/1(1分の6)も6になります。

6÷6は1になります。6/6(6分の6)も1になります。

 

このように、「分子÷分母」と「(分母)分の(分子)」は同じ計算をあわらしています。

つまり、どちらもわり算(除法)の表し方のひとつなのです。

ちなみに、この他に同じような意味を持つ表現には「割合を表す比」があります。

6:1は、6/1 と同じ。つまり、6÷1と同じ。

6:2は、6/2 と同じ。つまり、6÷2と同じ。

6:3は、6/3 と同じ。つまり、6÷3と同じ。

6:6は、6/6 と同じ。つまり、6÷6と同じ。

・・・ということです。

 

どうでしょう?

分数はわり算(除法)を表している」ということが納得できましたか?

あとは、「わり算(除法)が、分子÷分母 」であることを間違えないようにしてください。慣れない人は、よく逆に考えることがあります。

順序を忘れたら、「6:2は、6/2 と同じ。つまり、6÷2と同じ。」を思い浮かべて、「分子÷分母 」であることを思い出してください。

 

◆ 比:と ÷ の関係 ◆

6:1は、6/1 と同じ。つまり、6÷1と同じ。

6:2は、6/2 と同じ。つまり、6÷2と同じ。

6:3は、6/3 と同じ。つまり、6÷3と同じ。

6:6は、6/6 と同じ。つまり、6÷6と同じ。

・・・を見て、

「分数はわり算(除法)を表している」以外になにか気づきませんか?

 

実は、比の記号 : に、横棒を入れると、わり算(除法)の記号 ÷ になっています。

 

恐らく、歴史的には比や分数が先に考え出されて、その計算を表す新しい記号として ÷ が生まれたのではないかと、2πr(にーぱいあーる)は勝手に考えています。まったく別の由来もあるようですし、調べていないので確証はありませんが ・・・ m(_ _)m

でも、図のように分数から ÷ の記号が生まれたと考えるのは妥当だと考えています。

 

 

参考までに、次の3つの式を見比べてください。

 

18÷3=6÷1=6

18/3=6/1=6

18:3=6:1 比の値

比の値とは「記号:の右側の数字を基準に、記号:の左側の数字はその何倍なのかを表す数字」です。

どれも意味は同じです。

 

◆ 世界のわり算 ◆

話は少しそれるのですが、

日本は、なぜ18÷3=6÷1=6 の表現方法を採用したのでしょう。

「そもそも÷しか入ってこなかった?」

「÷を使った方が縦書きにも横書きにも使えると考えた?」

本当の理由はわかりませんが、÷ は世界ではほとんど使われていない記号であることは事実のようです。

ですから、「分数はわり算(除法)と同じ」ということは常に意識しておくとよいと思います。

特に、文字式を習うと ÷ を分数で表すきまりが出てきますし、実際に分数をわり算(除法)と考えることも多くなります。

インターネットで調べた限りでは、世界の多くの国々では、わり算(除法)を表すために、18/3=6/1=6 や 18:3=6:1 の表現方法を採用しているようです。

記号 ÷ を使っているのはイギリスとアメリカくらいのようです。しかし、アメリカで ÷ を見たことがないという人もいるようなので、本当のところはわかりません。

外国の人に会ったら、ぜひ質問してみてください。意外な事実が見えてくると思います。

ちなみに、数学などに関する備忘録というインターネット上のページには、スウェーデンあたりでは昔、マイナス記号の代わりに ÷ を使っていたこともあると記述されていました。

また、ウィキペディアでは次のような興味深い文章がありました。

ポーランド語などで、「÷」は範囲を示すのに使われていた。「:」にも同様の意味があり、たとえば「10÷20」や「10:20」は「10から20まで」を意味する。現在では自然言語ではあまり使われないが、Excelのセル範囲指定で「:」が使われる。

このように調べていくと、所詮(しょせん)数学で使われる記号は人間がつくったもので、つくった人やつくられた地域、その歴史などで、いろいろな記号が生まれ、いろいろな使い方がされている、ということがわかります。

まあ、これからは、わり算(除法)の記号は「/(スラッシュ)」、かけ算(乗法)の記号は「*(アスタリスク)」が世界共通になるかもしれません。

なぜならば、電卓やパソコンのキーボードに「÷」や「×」はないからです。あるのは「/」と「*」だけですから。

 

◆ 大切な計算はひとつ ◆

話を本題に戻します。

練習問題動画では、中学校で学ぶ分数の加法計算を4つの問題をもとに説明しています。

しかし、押さえるべき大切な計算はひとつだけです。それは,説明動画の最終問題である (-3/2)+(+1/4) です。

なぜならば、

項を並べた式に直して通分するテクニック

を使えば1,2番目の問題と共通ですし、

最初に同符号・異符号の2数の和を使うテクニック

も扱いやすい問題だからです。

この問題を2つのテクニックを使って解ければ、ここでのポイントはすべて押さえたことになります。

 

あと、間違えやすいのは「分数の横棒がカッコの代わり」ということでしょう。

写真のように、分子の項が 6 と -1 の2つあるときに分数を使う場合は、分子の6-1 を(  )で囲む必要はありません。分数の横棒がカッコの役割をしているからです。

数学の世界では、同じ意味をもつ2つの表現を2つ同時に使うと意味が変わることがあります。また、できるだけ簡単に表す必要があります。こうした理由から、分数の横棒がカッコの役割をしているので、さらに分子をカッコで囲むことはしないのです。

カッコをつけると間違いと判定されることもあるので、注意してください。

 

ちなみに、

スラッシュを使ってこの式を表すときは、カッコが必要になり、-(6-1)/4 と書きます。そして、この式は(-6+1)/4と表すこともできます。

これは、どちらも -5/4になることから納得できると思います。

カッコをつけずに -6-1/4 と書くと、「/4」は-1にだけ影響して(-6)+(-1/4)の意味になります。-6 と -1/4  は別々な項になることに注意してください。

このように、カッコの使い方は実はとても注意が必要です。

ついでに書いておくと、(-6-1)/4と-(6-1)/4はちがいます。

(-6-1)/4は-7/4、-(6-1)/4は-5/4となるからです。

カッコのつけ方がちょっと違うだけで全く違う式になりますね。

 

◆ 練習問題の補足 ◆

練習問題1.は、2通りの計算が正確にできることを目的につくりました。

 

 

 

 

 

練習問題2.は、項が3つの場合にも正確に計算できることを目的につくりました。

 

 

 

 

 

 

あとは、細かなテクニックが理解できるように解説を書きました。

細かなテクニックは、次の3つです。

① 「項を並べた式にして計算」が原則

分数や小数があっても、いままでと同様に「項を並べた式に直す」ことが一番のテクニック。

② 途中計算のテクニック

途中計算は、ミスをしないために必要ですが、相手に自分の考えを伝えるためにも書きます。しかし、分数の加法計算ともなると、基礎的な計算は暗算でやって途中計算に書かない方が、相手も自分も見やすくなります。だらだら長いだけの文章を、簡潔な文章にする方が好まれるのと同じです。

どの程度の途中計算を書けるようになればいいかについて、何ヶ所かで触れています。それらを参考に、自分にとっての理想の途中計算をノートにまとめてみるとよいと思います。

③ 整数や小数が混じっているときのテクニック

整数も小数も、「1分の~」という分数になることを利用して、全部分数にしてから計算する。

 

これらのテクニックを意識して、何度も練習してください。

問題を見たらスラスラと途中計算が書けるようになれば、このテーマは卒業です。

 

今回は、以上です。

 

スポンサーリンク

数学動画教材1109_01「テーマ:項を並べた式に直して速く正確に計算できる」について

◆ はじめに ◆

最初にお詫びをしなければなりません。動画教材のタイトル画像で、テーマが「項を並べた式に直して素早く正確に計算できる」とありますが、「素早く」は「速く」の間違いです。「正確」とセットなら「速く正確」だろうということで、「速く」を使うことにしました。混乱させて申し訳ありません。最初に動画教材を制作したときにタイトル画像の修正を忘れていました (^^ゞ

ちなみに、「素早く」と「素速く」では「素早く」が一般的に使われているようですが、ここでは「素速く」を使っています。

今回は、数学動画教材1109_01「テーマ:項を並べた式に直して速く正確に計算できる」の内容について少し詳しく説明します。

中学校数学を学ぶ人が、動画教材を見てからノートにまとめるときに参考になるような内容を目指すとともに、教える人の目線でも参考になるように考えて記事を書いたつもりです。いずれも2πr(にーぱいあーる)の見解でしかないのですが、よかったら参考にしてください。

また、この動画教材を使った自分なりの勉強の仕方で迷っているときは、ブログ「動画教材を使った勉強の仕方」を参考にしてください。サイト内検索で探す場合は、カテゴリー「勉強の仕方」で検索するとすぐ見つかります。アーカイブ(月単位)ならば「2018 6月」で検索してください。

動画教材へのリンク 1109_01_項を並べた式に直して速く計算できる_説明_by_2πr(にーぱいあーる)

動画教材へのリンク 1109_01_項を並べた式に直して速く計算できる_練習問題_by_2πr(にーぱいあーる)

項を並べた式に素速く直すことに慣れよう

今回のテーマのねらいは、「項を並べた式に素速く直すことに慣れる」です。これさえ身につけば、速く正確に計算することができるようになります。

多くの人は、「項」や「項を並べた式」を理解していても、いざ計算となると項を並べた式に直さず計算しようとしたり、項を並べた式に直そうとしても正確に直せなかったりして、計算を間違えたり、時間がかかってしまうようです。

また、項を並べた式に直してしまえば、ほとんどの人が「同符号・異符号の2数の和」を使って答えを出すことができるようです。(このシリーズでは、そのために練習をやってきました)

このように考えていくと、速く正確に答えを出すためには、いかに速く正確に項を並べた式に直せるかが大切だということになります。

ぜひ、素速く正確に項を並べた式に直せるようになってください。

動画教材でも触れていますが、このテーマでは新しく学ぶことは何もありません。ですから、今お話ししたことを常に頭に入れて練習問題に取り組んでください。

 

◆ 途中計算はとても大切です ◆

項を並べた式に速く正確に直すことが重要だと書きましたが、ただ、頭で意識しているだけではなかなか身につきません。ですから、途中計算には必ず項を並べた式を書いてください

 

説明動画の後半では、「項を並べた式とカッコのある式が混じった式」では「たし算に直す途中計算」は無理に書かなくてもよいことに触れています。

これは、「もうそろそろ暗算で項が並べる式に直せるようになったはずですよね」という意味が込められています。

 

みなさんは、3-5=-2 を計算するとき途中計算を書きますか?

ほとんどの人は暗算で答えを出すはずです。(たとえ「同符号・異符号の2数の和」を使えない人でも・・・)

つまり、このテーマを勉強している段階の皆さんは、すでに「同符号・異符号の2数の和」の計算は余裕で暗算できなければならない段階にいるということです。

 

同じように、今は、そろそろ暗算で項が並べる式に直せるようになる段階ということです。

 

以上のことから、今は、項を並べた式に速く正確に直すことに慣れるために途中計算を書く段階だと考えて練習しましょう。その意味で、途中計算はとても大切なのです。

もちろん、忘れたり、自信がないときは、ていねいに途中計算を書くことは大切です。また、あいている場所にメモ程度の計算をしながら途中計算を書いてもいいと思います。そして、徐々に速く正確に計算ができるようになってください。

 

◆ 小数の加法にも慣れよう! ◆

練習問題の (9) では、解説に 2.22.3=+(2.32.2)0.1 という途中計算があります。この途中計算は、「異符号の2数の和は、絶対値の大きい方の符号に絶対の差で計算できる」ことを使って書かれています。

同符号・異符号の2数の和は基本的には簡単なのですが、小数や分数になると急に難しく感じる人が多くなるようです。

しかし、小数の加法計算は、整数の場合と全く同じです。ですから、この機会に小数でも暗算で加法計算ができるくらいに練習してください。

小数の計算が苦手な人は、小学校のノートや問題集を調べたり、周囲の人に聞いて、今のうちに小数の加法計算ができるようになりましょう。

分数の加法計算については少し難しい計算があるので、次のテーマで詳しく説明します。

 

今回は以上です。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

スポンサーリンク

数学動画教材1108_01「テーマ:項を並べた式のよさが理解できる」について

◆ はじめに ◆

今回は、数学動画教材1108_01「テーマ:項を並べた式のよさが理解できる」の内容について少し詳しく説明します。

中学校数学を学ぶ人が、動画教材を見てからノートにまとめるときに参考になるような内容を目指すとともに、教える人の目線でも参考になるように考えて記事を書いたつもりです。いずれも2πr(にーぱいあーる)の見解でしかないのですが、よかったら参考にしてください。

また、この動画教材を使った自分なりの勉強の仕方で迷っているときは、ブログ「動画教材を使った勉強の仕方」を参考にしてください。サイト内検索で探す場合は、カテゴリー「勉強の仕方」で検索するとすぐ見つかります。アーカイブ(月単位)ならば「2018 6月」で検索してください。

動画教材へのリンク 1108_01_項を並べた式のよさが理解できる_説明_by_2πr(にーぱいあーる)

動画教材へのリンク 1108_01_項を並べた式のよさが理解できる_練習問題_by_2πr(にーぱいあーる)

項を並べた式のよさ

今回のテーマのねらいは、「項を並べた式はこんな理由で便利なんだ」と納得してもらうことです。「項を並べた式のよさ」については、動画教材で詳しく説明しています。納得するまで説明動画のスライドをじっくり見てください。

 

 

 

 

 

ここでは、この動画教材のポイントをもう一度確認します。

最も大切なことは、「たとえひき算に見えても加法なのだからいろいろ工夫ができる」ということが便利だと感じてもらえるかどうかです。

そのために、いろいろな例を説明しました。

そして、その工夫が「加法の性質」があるからできるということを理解してもらうことも大きなポイントです。

「加法の交換法則」、「加法の結合法則」は用語としても重要ですが、これらを使うと「3つ以上の数の加法は自由に2つの数を選んでから計算してもよい」という性質が生まれることが最も重要です。

これは、「項が並んだ式は、自由に順番を入れ替えてもよい」という性質といってもかまいません。

この性質があるからこそ、動画教材で紹介したような工夫ができるのです。

そして、この自由さはひき算にはありません!

ちなみに、乗法(かけ算)にも交換法則と結合法則があるので、必ず「加法の~法則」といいましょう。

乗法にも加法と同じような自由さがあります。このことについてはもう少し後のテーマでお話しします。もちろん、除法(わり算)には乗法のような自由さはありません (^^ゞ

項を並べた式の自由さがあるから「計算が楽になる」と感じるかどうかは、人によって違うと思います。

そこで、説明動画の最後のスライドでは「項を並べた式の方が工夫して計算できることはわかるでしょ?」と言い直しています。

ここには、今は感じなくてもいいが、どんどん計算をしていくうちに計算が楽になることを感じてくれるばすだ、という気持ちが込められています。

とりあえず今は、計算するときに少しでも楽になるように工夫してみてください。そうして、余裕がでてくる頃には「計算が楽になる」ことが実感できると思います。

 

◆ 項はカードと考える! ◆

「項を並べた式」には、「自由に順番を入れ替えてよい」、「どの数から計算してもよい」という性質があることについて、もう少し詳しく見てみます。

説明動画に 1+3+5 の計算を例に、自由に2つの数を選んで最初の計算をしてよいことを説明するスライドがあります。

左側の

1+3+5

=4+5

=9

は、左側から計算する原則にしたがって計算して、1と3を先に計算してよいことを表しています。

真ん中の

1+3+5

=1+5+3

=6+3

=9

は、加法の交換法則を1回使って3と5を交換できることから、1と5を先に計算してよいことを表しています。

右側の

1+3+5

=3+1+5

=3+5+1

=8+1

=9

は、2回加法の交換法則を使っています。

1回目は1と3を交換し、2回目は1と5を交換して、3+5+1 の式に変身できることから、3と5を先に計算してもよいことを表しています。

このように、場合分けをして考えることで、 1+3+5 は、1と3を先に計算しても、1と5を先に計算しても、3と5を先に計算してもよいことがわかるのです。そして、結果的に「1と3と5のどの2つの数から計算してもよい=自由」ということになります。

そして、くどいようですが、交換法則を使うと 1.3.5 の順番は自由に入れ替えてもいいことがわかります。

まるで、数字を書いたカードを並べて、そのカードを入れ替えている感じです。

これが「項を並べた式」のすばらしいところです。

項」をカードと考えて自由に順番を入れ替えるイメージを持つと、これからの計算にとても役立ちます。ぜひこうしたイメージを持ってください。

イメージを持ってもらうために、1108練習問題動画の2.(4)の問題を使って オマケ動画を制作しました。お遊び程度の簡単なものですが、見てやってください (^_^)v

 

 

◆ 本当のテクニック ◆

「項を並べた式」で楽をして計算しようとするときに、多少なりともテクニックがあります。

動画教材でも触れていますが、整理してみましょう。

一つ目のテクニックは、練習問題動画のほとんどの問題に使われている

◎「異符号の和」よりも「同符号の和」を先に計算する

というテクニックです。

ほとんどの人は「同符号の和」の方が計算が楽だと感じていることから、このようなテクニックがあります。

もちろん、「異符号の和」の方が計算が楽と感じている人は、「異符号の和」を先に計算してかまいません。

二つ目のテクニックは、

◎ 計算して 0 になるものを探す

というものです。

1.(1),(2) や 2.(1),(2) で使われています。

2.(4)

-4+2-5+3

の別解でも使われています。これは上級者向けテクニックなので詳しく見てみましょう。

ポイントは、「+2と+3で+5、これと-5を計算すると0になる!」ことに気づく・・・ことではありません。

本当のポイントは、

頭の中で、たくさんの計算方法を考えて比べることができる」ことです。

-4+2-5+3

=-4-5+2+3

=-9+5

=-4

とした方が楽か?

-4+2-5+3

=-4-5+2+3

=-4+5+5

=-4+0

=-4

とした方が楽か?

-4+2-5+3

=-2-2

=-4

とやるのも楽かも・・・

と、いろいろな計算方法を思い浮かべながら、どれを選択するか決めることができることが本当テクニックだと思います。

このテクニックは、影のテクニックといったところでとしょうか。

 

 

最後に、もうひとつテクニックを紹介します。

これは好き嫌いがあるので無理におすすめはしません。「こんなテクニックもあるんだ」程度に聞いておいてください。

では、そのテクニックとはこんな感じです。

◎ 計算して10や-10などの後の計算が楽になりそうな数字を選ぶ

どうでしょう?

ピンときましたか?

1.(5),(6) や 2.(5),(6) などがその例です。

2.(5) 8-99+9 では、

「-99+9を先に計算して、8-90を計算した方が、8-99を先に計算して-91+9を計算するよりも楽だ」と考えているということです。

あなたはどう考えますか?

 

以上、3つの◎テクニックを紹介しましたが、いろいろな計算方法を考えて途中計算を決めることこそが「本当のテクニック(影のテクニック)」です。

この「本当のテクニック」こそがとても大切なので、「頭の中で、どんな工夫がより楽なのかを比べられることが大切」という文章を、3枚ものスライドに入れたのです。

 

以上のことを意識して、しっかり計算練習をしましょう。

頑張ればきっとスラスラできるようになります。もちろん、計算も楽になります!

 

今回は、以上です。

 

スポンサーリンク