数学動画教材1115_01「テーマ:加減乗除の混じった計算が正確にできる」について

◆ はじめに ◆

中学校数学を学ぶ人が、動画教材を見てからノートにまとめるときに参考になるような内容を目指すとともに、教える人の目線でも参考になるように考えて記事を書いたつもりです。いずれも2πr(にーぱいあーる)の見解でしかないのですが、よかったら参考にしてください。

また、この動画教材を使った自分なりの勉強の仕方で迷っているときは、ブログ「動画教材を使った勉強の仕方」を参考にしてください。サイト内検索で探す場合は、カテゴリー「勉強の仕方」で検索するとすぐ見つかります。アーカイブ(月単位)ならば「2018 6月」で検索してください。

動画教材へのリンク 1115_01_加減乗除の混じった計算が正確にできる_説明_by_2πr(にーぱいあーる)

動画教材へのリンク 1115_01_加減乗除の混じった計算が正確にできる_練習問題_by_2πr(にーぱいあーる)

◆ 加減乗除の混じった計算とは ◆

加減乗除の混じった計算というとどんな式を想像しますか?

+-×÷の4つがみんな混じっている式を思い浮かべる人もいるでしょうが、実はそうではありません。

この動画教材であつかっている主な計算式を見てみると、

×40÷5  減乗除

×(-2)(-40)÷5  減乗除

×(-40)÷(-5)  減乗除

÷(-3)÷×405  減乗除

(-4)2乗 ÷{3(-5)}  減乗除

※2乗ということは(-4)×(-4)が含まれているから減除ではない。

84×1281×(-2)  加乗

81×{12+(-2)}  乗

となっており、加減乗除のうちのいくつかが混じっていればOKなのです。(加減乗除の記号つまり演算記号は赤太字にしてあります)

一番下の 81×{12+(-2)} は、カッコをひとつの数と考えるので、かけ算のみの式。つまり項がひとつの式なのですが、分配法則を使うと加乗除が混じっている式(すぐ上の式)になるので加減乗除の混じった計算に入れています。

別ないい方をすると、分配法則を逆に利用する計算があるので下2つの式はここのテーマで扱うことにしているということです。

ここらへんを整理してから、学ぶとよいと思います (^_-)v

 

◆ 大切なことは項の数 ◆

説明動画でも繰り返し触れていますが、加減乗除の混じった計算をするときに一番大切なことは「項の数がいくつなのかを判断できる」ことです。

ここがわかっていないと必ずミスをします。

説明動画を見る前でも、見た後でもかまいませんので、下の計算式の項の数をパッと見て判断してみてください。全部あっていればOKです。

そうでなければ、まだまだ修行が足りないということになります (^_^;)

では、いきます。

×40÷

×(-2)(-40)÷

×(-40)÷(-5)

÷(-3)÷×40

(-4)2乗 ÷{3(-5)}

84×1281×(-2)

81×{12+(-2)}

では、答えです。

項と項の間を離してあります。

続きを読む 数学動画教材1115_01「テーマ:加減乗除の混じった計算が正確にできる」について

スポンサーリンク

数学動画教材1114_01「テーマ:除法と乗法の混じった計算が正確にできる」について

◆ はじめに ◆

中学校数学を学ぶ人が、動画教材を見てからノートにまとめるときに参考になるような内容を目指すとともに、教える人の目線でも参考になるように考えて記事を書いたつもりです。いずれも2πr(にーぱいあーる)の見解でしかないのですが、よかったら参考にしてください。

また、この動画教材を使った自分なりの勉強の仕方で迷っているときは、ブログ「動画教材を使った勉強の仕方」を参考にしてください。サイト内検索で探す場合は、カテゴリー「勉強の仕方」で検索するとすぐ見つかります。アーカイブ(月単位)ならば「2018 6月」で検索してください。

動画教材へのリンク 1114_01_除法と乗法の混じった計算が正確にできる_説明_by_2πr(にーぱいあーる)

動画教材へのリンク 1114_01_除法と乗法の混じった計算が正確にできる_練習問題_by_2πr(にーぱいあーる)

◆ 最初に逆数?、符号? ◆

今回のテーマのねらいは、「最初に逆数を使うか、それとも最初に符号を決めるか、自分で優先順位を決めることができる」ことです。これができるようになれば、除法と乗法が混じった計算は正確にできるようになります。

具体的には、説明動画教材の最後から2番目のスライドにある「重要」であつかっている問題を例に説明します。

 

(-5/2)×(-7)÷(-5/6) を2通りの方法で解くのですが、

最初の方法は、÷(-5/6)を逆数を使って ×(-6/5)に変えて、乗法だけの式にしてから答えの符号を決めるやり方です。

別解は、最初に答えの符号を決めてから、÷5/6 を、逆数を使って ×6/5 に変えて計算を進めています。

どちらも正しいのですが、あなたならどちらを優先的に利用しますか? その理由は?

 

・・・この答えは、自分なりの理由さえあればどちらでもかまいません。大切なことは「自分なりの理由」があってそれをわかりやすく他人に伝えることができることなのです。

それができる人は、どちらの方法も自由に使える力をもっているからです。

ちなみに、2πr(にーぱいあーる)の意見を紹介します。

 

「わたしは、答えの符号を先に決める方法を優先的に利用します。なぜならば、除法は乗法に直すことができるとわかっているので、÷が入っていても乗法だけの計算と見なしてよいからです。いままで、乗法だけの計算では答えの符号を先に決めることを最優先にして計算しているので、これからも除法と乗法が混じっている計算も同じように計算した方が楽だと思うからです。」

 

どうでしょうか?

2πr(にーぱいあーる)は、逆数を学ぶことは「除法は乗法と同じように扱っていいんだ」というテクニックを説明するために必要で、このことさえ納得できれば、「じゃあ、いいまでの乗法の計算と同じように計算していいんだ」と考えいます。

つまり、2πr(にーぱいあーる)は、『「乗法の計算は答えの符号を先に決める」を除法が混じっていても使っていいということ』が今回のテーマで一番理解して欲しいことだ、と考えているのです。

もちろん、違う考えがあってもかまいません。

実は、説明動画の最後のまとめを見てもらうとわかりますが、2πr(にーぱいあーる)の考えはあえて隠しています。

理由は、このテーマで学んだものは自分で自由に整理して欲しいからです。

どちらの方法でもいいのですから、いろいろ経験していくうちに自分なりの優先方法が決まってくればいいのです。

そうした自分なりの整理整頓が学ぶことの楽しさにつながると思います (^_-)v

 

◆ 逆数について ◆

分数とわり算が同じものであることは、ブログ1110_01「テーマ:分数の加法が正確に計算できる」について で、別な角度から詳しく触れていますが、見ていない人も多いと考えて最初のスライドで軽く触れました。

そして、このことを使って小学校で学んだはずの「わり算は逆数を使ってかけ算に直せる」ことを、あまり見慣れない方法で説明しています。

その理由は、(経験上)ほとんどの人は「逆数は分母分子を入れ替えたもの」程度の記憶しかないと思われるので、逆数の定義(2数をかけて1になるとき一方は他方の逆数という)が突然出されても頭に入りにくいのではないか、と考えたからです。

もしそうであれば、目新しくて頭に入りやすい知識(分数はわり算)と計算に必ず必要な約分や通分の性質を利用して説明した方が効果的なのかな・・・という感じです。

「いや、数学は定義から進めて理路整然とすべきだ」と考えている方も大勢いらっしゃると思いますが、ひとつの考え方だと思っていただければ幸いです m(_ _)m

ちなみに、逆数の定義を扱わないのは問題があるので、中学校レベルの逆数(負の数の逆数)で触れています。

逆数はこれからの計算にはなくてはならないもののひとつです。

それは、練習問題動画に取り組むとわかると思います。

累乗も絡んできて今までの知識も必要です。

ぜひ、スラスラと途中計算が書けて解けるようになってください。

今回は、以上です。

 

スポンサーリンク

数学動画教材1113_01「テーマ:累乗を含む計算が正確にできる」について

◆ はじめに ◆

中学校数学を学ぶ人が、動画教材を見てからノートにまとめるときに参考になるような内容を目指すとともに、教える人の目線でも参考になるように考えて記事を書いたつもりです。いずれも2πr(にーぱいあーる)の見解でしかないのですが、よかったら参考にしてください。

また、この動画教材を使った自分なりの勉強の仕方で迷っているときは、ブログ「動画教材を使った勉強の仕方」を参考にしてください。サイト内検索で探す場合は、カテゴリー「勉強の仕方」で検索するとすぐ見つかります。アーカイブ(月単位)ならば「2018 6月」で検索してください。

動画教材へのリンク 1113_01_累乗を含む計算が正確にできる_説明_by_2πr(にーぱいあーる)

動画教材へのリンク 1113_01_累乗を含む計算が正確にできる_練習問題_by_2πr(にーぱいあーる)

◆ 累乗計算は、暗算が最終目標 ◆

今回のテーマの本当のねらいは、「累乗の計算を暗算で計算できるようになる」です。

それが、累乗を含む計算を正確に計算するうえで最も大切なことだからです。

特に、次のテーマである

「1114 乗法と除法の混じった計算」

「1115 加減乗除の混じった計算が正確にできる」

では、複雑な計算式の中に累乗が紛れ込んできます。

そのような計算は、累乗計算が暗算でできないと、途中計算がわかりにくいものになってしまいます。

もちろんこの動画教材の中心である「カッコが関わっているときの累乗計算」は注意深く理解する必要があります。最初は、ゆっくりていねいに途中計算を書いて「カッコが関わっているときの累乗計算」に慣れてください。

そして、必要に応じて途中計算を書いたり、省略したりできるようになりましょう。

 

◆ カッコの意味を理解する ◆

「カッコが関わっているときの累乗計算は注意深くする必要がある」といいましたが、そのためには、カッコの意味をよく考えることが必要です。ちなみに、分数の横棒もカッコと考えておくといいと思います。

動画教材をよく見て自分なりのカッコの意味を整理するといいのですが、ここでは簡単にポイントを示しておきます。

指数がカッコの中にあるか、外にあるかに気をつける。

○ 分数の場合、カッコの中に指数があるときは、「分母の累乗計算」なのか、「分子の累乗計算」なのかを明確に判断する。

この2つだけです。

これをしっかり頭に入れて、動画教材に取り組めば大丈夫!

簡単ですが、今回は以上です。

 

p.s.

WordPress では指数表現ができない・・・は無関係です。動画教材に重要なポイントがまとまっているので、簡単な説明になりました m(_ _)m

 

スポンサーリンク

数学動画教材1112_01「テーマ:3つ以上の数の乗法計算が正確にできる」について

◆ はじめに ◆

中学校数学を学ぶ人が、動画教材を見てからノートにまとめるときに参考になるような内容を目指すとともに、教える人の目線でも参考になるように考えて記事を書いたつもりです。いずれも2πr(にーぱいあーる)の見解でしかないのですが、よかったら参考にしてください。

また、この動画教材を使った自分なりの勉強の仕方で迷っているときは、ブログ「動画教材を使った勉強の仕方」を参考にしてください。サイト内検索で探す場合は、カテゴリー「勉強の仕方」で検索するとすぐ見つかります。アーカイブ(月単位)ならば「2018 6月」で検索してください。

動画教材へのリンク 1112_01_3つ以上の数の乗法計算が正確にできる_説明_by_2πr(にーぱいあーる)

動画教材へのリンク 1112_01_3つ以上の数の乗法計算が正確にできる_練習問題_by_2πr(にーぱいあーる)

◆ 「答えの符号の決め方」が大切 ◆

今回のテーマのねらいは、「3つ以上の数の乗法計算も答えの符号を先に決めて正確することができる」ことです。

実は、除法は逆数で乗法にするこができるので、乗法と除法が混じった式や除法が複数ある式も同様に答えの符号を決めることができます。

これについては、後のテーマで説明します。

動画教材の説明のように、いくつ負の数をかけるかが答えの符号を決めるポイントとなっています。

あとは、乗法にも「交換法則」、「結合法則」が成り立つので、かける順序も数字の順番も自由だということも大切なポイントです。

これらのどれもがパッと浮かぶようになって、何通りかの計算方法が頭に浮かぶようになることが大切です。

その中から一番よい方法を選んで途中計算を書くことができるように、練習に取り組んでください。

もちろん、数直線上の動きで意味を説明できるようになることも忘れずに!

今回は、以上です。

 

数学動画教材1111_01「テーマ:正負の数における乗法の意味が理解できる」について

◆ はじめに ◆

中学校数学を学ぶ人が、動画教材を見てからノートにまとめるときに参考になるような内容を目指すとともに、教える人の目線でも参考になるように考えて記事を書いたつもりです。いずれも2πr(にーぱいあーる)の見解でしかないのですが、よかったら参考にしてください。

また、この動画教材を使った自分なりの勉強の仕方で迷っているときは、ブログ「動画教材を使った勉強の仕方」を参考にしてください。サイト内検索で探す場合は、カテゴリー「勉強の仕方」で検索するとすぐ見つかります。アーカイブ(月単位)ならば「2018 6月」で検索してください。

動画教材へのリンク 1111_01_正負の数における乗法の意味が理解できる_説明_by_2πr(にーぱいあーる)

動画教材へのリンク 1111_01_正負の数における乗法の意味が理解できる_練習問題_by_2πr(にーぱいあーる)

 

◆ 乗法・乗法の意味 ◆

今回のテーマのねらいは、「乗法・除法の意味を理解すること」です。

本来、乗法と除法は切っても切れない関係にありますから、乗法と除法の意味を自分なりに納得して理解できることが最も大切なこととなります。(今は、細かいことにはこだわらなくてもよいです)

ちなみに、説明動画の最後の方で突然「積(せき)」という用語を使っています。話の流れから想像できた人もいるかと思いますが、積は「乗法の答え」のことです。加法の答え、減法の答え、乗法の答え、除法の答えをそれぞれ、和、差、積、商といいます。ここは動画教材に載せることを忘れてしまいました (^_^;)

2πr(にーぱいあーる)は、乗法と除法の関係を次のように考えています。

– – – – – – – – – – – – – –

3×2=6は誰もが知っていますから、

「3×◇=6のとき、◇はいくつ?」と聞かれたとき、「2です。」と誰もが答えることができます。

では、「11×◇=123のとき、◇はいくつ?」と聞かれたらどうでしょう?

すぐ答えられる人は少ないのではないでしょうか。

そこで、誰もがすぐ◇を求められる方法を考えました。その方法が除法(わり算)です。

つまり、3×2=6だから3×◇=6のときの◇を求めるために「6わる3(6÷3)」という計算をすればよいと考えたのです。

つまり、◇を求めるために生まれたのが除法ということになります。

ここで、「11×◇=123のとき、◇はいくつ?」に戻ると、

◇=123÷11=13と計算できるので、誰もが「◇は13です」と答えられるようになるということです。

– – – – – – – – – – – – – –

このような関係は、加法と減法にもいえます。

つまり、「2+◇=5」の◇を求めるために生まれたのが減法というこです。

これらのことは小学校でも触れられていると思いますが、どうでしょう?

ちなみに、

「7×◇=3のとき、◇はいくつ?」と聞かれたら、

「◇=3÷7=3/7 です。」と答えることになりますが、

当然、分数という数がなかったら、

誰かが分数をつくっただろうと簡単に想像できる・・・

などと考えていくと、少しは身近に感じませんか ?

・・・無理かもですね (^^ゞ

※ 確かめ 7×3/7=3 OK!

 

◆ 「負の数をかける」意味 ◆

動画教材では、「負の数をかける」とは「向きを変える」ことだと説明しています。

このことをもう少し詳しく説明します。

実は、(+2)×(-3)=-(2×3) は 次のような式がより正確に意味を表しています。

(+2)×(-3)=(+2)×(-1)×3

つまり、「かけるマイナス3」とは「マイナス1をかけて3倍すること」と考えるのです。

そうすると、「マイナス1をかけること」が「向きを変えること」を表しているとわかります。

ですから、正確には「マイナス1をかけることが向きを変えることを表している」ということなのです。

では、

(+2)×(-3)=-(2×3) と表したのは何故かというと、

符号を先に決めて、後は小学校のかけ算をすればいい」ことを理解してほしかったからです。

このように、式にはそれぞれに意味があるので、式の意味をしっかり理解してください。

 

◆ 約分の仕方 ◆

約分の仕方は知っていても、

小学校でわり算が苦手だった人は、答えが分数の形になってから約分を考える人が多いように感じています。

きっと頑張って身につけたのだと思いますが、中学生になったら「途中計算の段階で約分」をしてください。

このやり方が絶対に計算が楽です!

中学校では分数の分母分子が大きな数になることも多いので、最後に約分をすると 、約分もしにくく、ミスも多くなります。

そして、一番理想的なのは「途中計算の段階で約分して、最後にさらに約分できないか確かめる」という姿勢を持つことなのです。

ですから、いまのうちに途中計算の段階で約分ができるようになりましょう。

もちろん、「答えの符号を先に決める」を確実に身につけることが最も大切です!

今回は、以上です。